Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(44): e2304339120, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883438

RESUMEN

Malaria remains a devastating disease and, with current measures failing to control its transmission, there is a need for novel interventions. A family of proteins that have long been pursued as potential intervention targets are aquaporins, which are channels facilitating the movement of water and other solutes across membranes. We identify an aquaporin in malaria parasites and demonstrate that it is important for completion of Plasmodium development in the mosquito vector. Disruption of AQP2 in the human parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei blocks sporozoite production inside oocysts established on mosquito midguts, greatly limiting parasite infection of salivary glands and transmission to a new host. In vivo epitope tagging of AQP2 in P. berghei, combined with immunofluorescence assays, reveals that the protein is localized in vesicle-like organelles found in the cytoplasm of gametocytes, ookinetes, and sporozoites. The number of these organelles varies between individual parasites and lifecycle stages suggesting that they are likely part of a dynamic endomembrane system. Phylogenetic analysis confirms that AQP2 is unique to malaria and closely related parasites and most closely resembles intracellular aquaporins. Structure prediction analyses identify several unusual features, including a large accessory extracellular loop and an arginine-to-phenylalanine substitution in the selectivity filter principally determining pore function, a unique feature among known aquaporins. This in conjunction with the importance of AQP2 for malaria transmission suggests that AQP2 may be a fruitful target of antimalarial interventions.


Asunto(s)
Acuaporina 2 , Mosquitos Vectores , Proteínas Protozoarias , Animales , Malaria , Mosquitos Vectores/parasitología , Filogenia , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo
2.
Cell Microbiol ; 17(2): 254-68, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25225164

RESUMEN

The passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in the midgut blood bolus to sporulating oocysts on the basal gut wall. Data analysis identified several distinct transcriptional programmes encompassing genes putatively involved in developmental processes or in interactions with the mosquito. At least two of these programmes are associated with the ookinete development that is linked to mosquito midgut invasion and establishment of infection. Targeted disruption by homologous recombination of two of these genes resulted in mutant parasites exhibiting notable infection phenotypes. GAMER encodes a short polypeptide with granular localization in the gametocyte cytoplasm and shows a highly penetrant loss-of-function phenotype manifested as greatly reduced ookinete numbers, linked to impaired male gamete release. HADO encodes a putative magnesium phosphatase with distinctive cortical localization along the concave ookinete periphery. Disruption of HADO compromises ookinete development leading to significant reduction of oocyst numbers. Our data provide important insights into the molecular framework underpinning Plasmodium development in the mosquito and identifies two genes with important functions at initial stages of parasite development in the mosquito midgut.


Asunto(s)
Anopheles/parasitología , Perfilación de la Expresión Génica , Plasmodium berghei/crecimiento & desarrollo , Animales , Tracto Gastrointestinal/parasitología , Malaria/transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Plasmodium berghei/genética , Plasmodium berghei/aislamiento & purificación
3.
Cell Host Microbe ; 31(9): 1539-1551.e6, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37708854

RESUMEN

Malaria remains one of the most devastating infectious diseases. Reverse genetic screens offer a powerful approach to identify genes and molecular processes governing malaria parasite biology. However, the complex regulation of gene expression and genotype-phenotype associations in the mosquito vector, along with sexual reproduction, have hindered the development of screens in this critical part of the parasite life cycle. To address this, we developed a genetic approach in the rodent parasite Plasmodium berghei that, in combination with barcode sequencing, circumvents the fertilization roadblock and enables screening for gametocyte-expressed genes required for parasite infection of the mosquito Anopheles coluzzii. Our results confirm previous findings, validating our approach for scaling up, and identify genes necessary for mosquito midgut infection, oocyst development, and salivary gland infection. These findings can aid efforts to study malaria transmission biology and to develop interventions for controlling disease transmission.


Asunto(s)
Anopheles , Esporozoítos , Animales , Esporozoítos/genética , Mosquitos Vectores/genética , Plasmodium berghei/genética , Anopheles/genética
4.
Sci Rep ; 7(1): 6026, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28729672

RESUMEN

Malaria is a mosquito-borne disease affecting millions of people every year. The rodent parasite Plasmodium berghei has served as a model for human malaria transmission studies and played a pivotal role in dissecting the mosquito immune response against infection. The 6-cysteine protein P47, known to be important for P. berghei female gamete fertility, is shown to serve a different function in Plasmodium falciparum, protecting ookinetes from the mosquito immune response. Here, we investigate the function of P. berghei P47 in Anopheles gambiae mosquito infections. We show that P47 is expressed on the surface of both female gametocytes and ookinetes where it serves distinct functions in promoting gametocyte-to-ookinete development and protecting ookinetes from the mosquito complement-like response, respectively. The latter function is essential, as ookinetes lacking P47 are targeted for killing while traversing the mosquito midgut cells and eliminated upon exposure to hemolymph proteins of the complement-like system. Silencing key factors of the complement-like system restores oocyst development and disease transmission to rodent hosts. Our data establish a dual role of P. berghei P47 in vivo and reinforce the use of this parasite to study the impact of the mosquito immune response on human malaria transmission.


Asunto(s)
Anopheles/inmunología , Anopheles/parasitología , Interacciones Huésped-Parásitos/inmunología , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Animales , Proteínas del Sistema Complemento/inmunología , Femenino , Expresión Génica , Silenciador del Gen , Malaria/parasitología , Malaria/transmisión , Oocistos , Proteínas Protozoarias/genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA