Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 293(21): 8020-8031, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29636413

RESUMEN

A central step in the pathogenesis of prion diseases is the conformational transition of the cellular prion protein (PrPC) into the scrapie isoform, denoted PrPSc Studies in transgenic mice have indicated that this conversion requires a direct interaction between PrPC and PrPSc; however, insights into the underlying mechanisms are still missing. Interestingly, only a subfraction of PrPC is converted in scrapie-infected cells, suggesting that not all PrPC species are suitable substrates for the conversion. On the basis of the observation that PrPC can form homodimers under physiological conditions with the internal hydrophobic domain (HD) serving as a putative dimerization domain, we wondered whether PrP dimerization is involved in the formation of neurotoxic and/or infectious PrP conformers. Here, we analyzed the possible impact on dimerization of pathogenic mutations in the HD that induce a spontaneous neurodegenerative disease in transgenic mice. Similarly to wildtype (WT) PrPC, the neurotoxic variant PrP(AV3) formed homodimers as well as heterodimers with WTPrPC Notably, forced PrP dimerization via an intermolecular disulfide bond did not interfere with its maturation and intracellular trafficking. Covalently linked PrP dimers were complex glycosylated, GPI-anchored, and sorted to the outer leaflet of the plasma membrane. However, forced PrPC dimerization completely blocked its conversion into PrPSc in chronically scrapie-infected mouse neuroblastoma cells. Moreover, PrPC dimers had a dominant-negative inhibition effect on the conversion of monomeric PrPC Our findings suggest that PrPC monomers are the major substrates for PrPSc propagation and that it may be possible to halt prion formation by stabilizing PrPC dimers.


Asunto(s)
Neuroblastoma/prevención & control , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Multimerización de Proteína , Scrapie/prevención & control , Animales , Células HeLa , Humanos , Ratones , Ratones Transgénicos , Neuroblastoma/patología , Transporte de Proteínas , Scrapie/patología , Células Tumorales Cultivadas
2.
J Biol Chem ; 292(52): 21383-21396, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29084847

RESUMEN

About one-quarter to nearly one-third of the proteins synthesized in the cytosol of eukaryotic cells are integrated into the plasma membrane or are secreted. Translocation of secretory proteins into the lumen of the endoplasmic reticulum or the periplasm of bacteria is mediated by a highly conserved heterotrimeric membrane protein complex denoted Sec61 in eukaryotes and SecYEG in bacteria. To evaluate a possible modulation of the translocation efficiency by secondary structures of the nascent peptide chain, we performed a comparative analysis in bacteria, yeast, and mammalian cells. Strikingly, neither the bacterial SecY nor the eukaryotic Sec61 translocon was able to efficiently transport proteins entirely composed of intrinsically disordered domains (IDDs) or ß-strands. However, translocation could be restored by α-helical domains in a position- and organism-dependent manner. In bacteria, we found that the α-helical domains have to precede the IDD or ß-strands, whereas in mammalian cells, C-terminally located α-helical domains are sufficient to promote translocation. Our study reveals an evolutionarily conserved deficiency of the Sec61/SecY complex to translocate IDDs and ß-strands in the absence of α-helical domains. Moreover, our results may suggest that adaptive pathways co-evolved with the expansion of IDDs in the proteome of eukaryotic cells to increase the transport capacity of the Sec61 translocon.


Asunto(s)
Canales de Translocación SEC/metabolismo , Canales de Translocación SEC/fisiología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo , Estructura Secundaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Biochem Biophys Res Commun ; 486(3): 738-743, 2017 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-28342870

RESUMEN

Macroautophagy is a conserved degradative pathway and its deterioration is linked to disturbances in cellular proteostasis and multiple diseases. Here, we show that the RAB GTPase RAB18 modulates autophagy in primary human fibroblasts. The knockdown of RAB18 results in a decreased autophagic activity, while its overexpression enhances the degradative pathway. Importantly, this function of RAB18 is dependent on RAB3GAP1 and RAB3GAP2, which might act as RAB GEFs and stimulate the activity of the RAB GTPase. Moreover, the knockdown of RAB18 deteriorates proteostasis and results in the intracellular accumulation of ubiquitinated degradation-prone proteins. Thus, the RAB GTPase RAB18 is a positive modulator of autophagy and is relevant for the maintenance of cellular proteostasis.


Asunto(s)
Autofagia/genética , Fibroblastos/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab3/genética , Fibroblastos/citología , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Cultivo Primario de Células , Estabilidad Proteica , Proteolisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Proteína Fluorescente Roja
4.
PLoS One ; 13(5): e0197659, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29791485

RESUMEN

The cellular prion protein (PrPC) is implicated in neuroprotective signaling and neurotoxic pathways in both prion diseases and Alzheimer's disease (AD). Specifically, the intrinsically disordered N-terminal domain (N-PrP) has been shown to interact with neurotoxic ligands, such as Aß and Scrapie prion protein (PrPSc), and to be crucial for the neuroprotective activity of PrPC. To gain further insight into cellular pathways tied to PrP, we analyzed the brain interactome of N-PrP. As a novel approach employing recombinantly expressed PrP and intein-mediated protein ligation, we used N-PrP covalently coupled to beads as a bait for affinity purification. N-PrP beads were incubated with human AD or control brain lysates. N-PrP binding partners were then identified by electrospray ionization tandem mass spectrometry (nano ESI-MS/MS). In addition to newly identified proteins we found many previously described PrP interactors, indicating a crucial role of the intrinsically disordered part of PrP in mediating protein interactions. Moreover, some interactors were found only in either non-AD or AD brain, suggesting aberrant PrPC interactions in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas PrPC/metabolismo , Resinas Acrílicas , Anciano de 80 o más Años , Encéfalo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Polietilenglicoles , Dominios y Motivos de Interacción de Proteínas , Espectrometría de Masa por Ionización de Electrospray
5.
Sci Rep ; 6: 24970, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27117504

RESUMEN

Misfolding of proteins in the biosynthetic pathway in neurons may cause disturbed protein homeostasis and neurodegeneration. The prion protein (PrP(C)) is a GPI-anchored protein that resides at the plasma membrane and may be misfolded to PrP(Sc) leading to prion diseases. We show that a deletion in the C-terminal domain of PrP(C) (PrPΔ214-229) leads to partial retention in the secretory pathway causing a fatal neurodegenerative disease in mice that is partially rescued by co-expression of PrP(C). Transgenic (Tg(PrPΔ214-229)) mice show extensive neuronal loss in hippocampus and cerebellum and activation of p38-MAPK. In cell culture under stress conditions, PrPΔ214-229 accumulates in the Golgi apparatus possibly representing transit to the Rapid ER Stress-induced ExporT (RESET) pathway together with p38-MAPK activation. Here we describe a novel pathway linking retention of a GPI-anchored protein in the early secretory pathway to p38-MAPK activation and a neurodegenerative phenotype in transgenic mice.


Asunto(s)
Enfermedades por Prión/fisiopatología , Proteínas Priónicas/metabolismo , Vías Secretoras , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Cerebelo/patología , Hipocampo/patología , Ratones Transgénicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Priónicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA