Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(32): 9069-74, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457930

RESUMEN

Ventilator-induced diaphragmatic dysfunction (VIDD) refers to the diaphragm muscle weakness that occurs following prolonged controlled mechanical ventilation (MV). The presence of VIDD impedes recovery from respiratory failure. However, the pathophysiological mechanisms accounting for VIDD are still not fully understood. Here, we show in human subjects and a mouse model of VIDD that MV is associated with rapid remodeling of the sarcoplasmic reticulum (SR) Ca(2+) release channel/ryanodine receptor (RyR1) in the diaphragm. The RyR1 macromolecular complex was oxidized, S-nitrosylated, Ser-2844 phosphorylated, and depleted of the stabilizing subunit calstabin1, following MV. These posttranslational modifications of RyR1 were mediated by both oxidative stress mediated by MV and stimulation of adrenergic signaling resulting from the anesthesia. We demonstrate in the murine model that such abnormal resting SR Ca(2+) leak resulted in reduced contractile function and muscle fiber atrophy for longer duration of MV. Treatment with ß-adrenergic antagonists or with S107, a small molecule drug that stabilizes the RyR1-calstabin1 interaction, prevented VIDD. Diaphragmatic dysfunction is common in MV patients and is a major cause of failure to wean patients from ventilator support. This study provides the first evidence to our knowledge of RyR1 alterations as a proximal mechanism underlying VIDD (i.e., loss of function, muscle atrophy) and identifies RyR1 as a potential target for therapeutic intervention.


Asunto(s)
Diafragma/fisiopatología , Respiración Artificial/efectos adversos , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Animales , Calcio/metabolismo , Humanos , Ratones , Contracción Muscular , Estrés Oxidativo , Receptores Adrenérgicos beta/fisiología , Transducción de Señal , Proteínas de Unión a Tacrolimus/fisiología , Ventiladores Mecánicos/efectos adversos
2.
Proc Natl Acad Sci U S A ; 111(42): 15250-5, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288763

RESUMEN

Age-related skeletal muscle dysfunction is a leading cause of morbidity that affects up to half the population aged 80 or greater. Here we tested the effects of increased mitochondrial antioxidant activity on age-dependent skeletal muscle dysfunction using transgenic mice with targeted overexpression of the human catalase gene to mitochondria (MCat mice). Aged MCat mice exhibited improved voluntary exercise, increased skeletal muscle specific force and tetanic Ca(2+) transients, decreased intracellular Ca(2+) leak and increased sarcoplasmic reticulum (SR) Ca(2+) load compared with age-matched wild type (WT) littermates. Furthermore, ryanodine receptor 1 (the sarcoplasmic reticulum Ca(2+) release channel required for skeletal muscle contraction; RyR1) from aged MCat mice was less oxidized, depleted of the channel stabilizing subunit, calstabin1, and displayed increased single channel open probability (Po). Overall, these data indicate a direct role for mitochondrial free radicals in promoting the pathological intracellular Ca(2+) leak that underlies age-dependent loss of skeletal muscle function. This study harbors implications for the development of novel therapeutic strategies, including mitochondria-targeted antioxidants for treatment of mitochondrial myopathies and other healthspan-limiting disorders.


Asunto(s)
Envejecimiento , Antioxidantes/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/patología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Catalasa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Oxígeno/metabolismo , Calidad de Vida , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Estrés Mecánico , Proteína 1A de Unión a Tacrolimus/metabolismo , Factores de Tiempo
3.
J Physiol ; 590(24): 6381-7, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23070698

RESUMEN

Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle ß-adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca(2+) release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild-type mice with the ß-receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca(2+) and force generation. In contrast, the enhanced muscle Ca(2+), force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1-S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca(2+) release due to PKA phosphorylation of S2844 in RyR1.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Isoproterenol/farmacología , Contracción Muscular/efectos de los fármacos , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musculares de Contracción Rápida/enzimología , Fosforilación , Mutación Puntual , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Serina , Factores de Tiempo
4.
Elife ; 112022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35506650

RESUMEN

Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in Caenorhabditis elegans (C. elegans); however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals, UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Furthermore, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in 'leaky' channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes ~2 years in mice and ~80 years in humans, occurs in less than 2-3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in lifespan among species.


Asunto(s)
Proteínas de Caenorhabditis elegans , Canal Liberador de Calcio Receptor de Rianodina , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Señalización del Calcio , Mamíferos/metabolismo , Ratones , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
5.
BMC Evol Biol ; 9: 170, 2009 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-19619322

RESUMEN

BACKGROUND: Members of the Ribonuclease (RNase) T2 family are common models for enzymological studies, and their evolution has been well characterized in plants. This family of acidic RNases is widespread, with members in almost all organisms including plants, animals, fungi, bacteria and even some viruses. While several biological functions have been proposed for these enzymes in plants, their role in animals is unknown. Interestingly, in vertebrates most of the biological roles of plant RNase T2 proteins are carried out by members of a different family, RNase A. Still, RNase T2 proteins are conserved in these animals RESULTS: As a first step to shed light on the role of animal RNase T2 enzymes, and to understand the evolution of these proteins while co-existing with the RNase A family, we characterized RNase Dre1 and RNase Dre2, the two RNase T2 genes present in the zebrafish (Danio rerio) genome. These genes are expressed in most tissues examined, including high expression in all stages of embryonic development, and their expression corresponds well with the presence of acidic RNase activities in every tissue analyzed. Embryo expression seems to be a conserved characteristic of members of this family, as other plant and animal RNase T2 genes show similar high expression during embryo development. While plant RNase T2 proteins and the vertebrate RNase A family show evidences of radiation and gene sorting, vertebrate RNase T2 proteins form a monophyletic group, but there is also another monophyletic group defining a fish-specific RNase T2 clade. CONCLUSION: Based on gene expression and phylogenetic analyses we propose that RNase T2 enzymes carry out a housekeeping function. This conserved biological role probably kept RNase T2 enzymes in animal genomes in spite of the presence of RNases A. A hypothetical role during embryo development is also discussed.


Asunto(s)
Endorribonucleasas/genética , Evolución Molecular , Proteínas de Peces/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN Complementario/genética , Embrión no Mamífero/metabolismo , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN
7.
Nat Med ; 21(11): 1262-1271, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26457758

RESUMEN

Cancer-associated muscle weakness is a poorly understood phenomenon, and there is no effective treatment. Here we find that seven different mouse models of human osteolytic bone metastases-representing breast, lung and prostate cancers, as well as multiple myeloma-exhibited impaired muscle function, implicating a role for the tumor-bone microenvironment in cancer-associated muscle weakness. We found that transforming growth factor (TGF)-ß, released from the bone surface as a result of metastasis-induced bone destruction, upregulated NADPH oxidase 4 (Nox4), resulting in elevated oxidization of skeletal muscle proteins, including the ryanodine receptor and calcium (Ca(2+)) release channel (RyR1). The oxidized RyR1 channels leaked Ca(2+), resulting in lower intracellular signaling, which is required for proper muscle contraction. We found that inhibiting RyR1 leakage, TGF-ß signaling, TGF-ß release from bone or Nox4 activity improved muscle function in mice with MDA-MB-231 bone metastases. Humans with breast- or lung cancer-associated bone metastases also had oxidized skeletal muscle RyR1 that is not seen in normal muscle. Similarly, skeletal muscle weakness, increased Nox4 binding to RyR1 and oxidation of RyR1 were present in a mouse model of Camurati-Engelmann disease, a nonmalignant metabolic bone disorder associated with increased TGF-ß activity. Thus, pathological TGF-ß release from bone contributes to muscle weakness by decreasing Ca(2+)-induced muscle force production.


Asunto(s)
Neoplasias Óseas/metabolismo , Calcio/metabolismo , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Osteólisis/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Absorciometría de Fotón , Animales , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Señalización del Calcio , Síndrome de Camurati-Engelmann/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Células MCF-7 , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Contracción Muscular , Proteínas Musculares/metabolismo , Fuerza Muscular , Debilidad Muscular/etiología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neoplasias/complicaciones , Neoplasias/patología , Osteólisis/diagnóstico por imagen , Osteólisis/etiología , Oxidación-Reducción , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Regulación hacia Arriba , Microtomografía por Rayos X
8.
Skelet Muscle ; 2(1): 9, 2012 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-22640601

RESUMEN

BACKGROUND: Disruption of the sarcolemma-associated dystrophin-glycoprotein complex underlies multiple forms of muscular dystrophy, including Duchenne muscular dystrophy and sarcoglycanopathies. A hallmark of these disorders is muscle weakness. In a murine model of Duchenne muscular dystrophy, mdx mice, cysteine-nitrosylation of the calcium release channel/ryanodine receptor type 1 (RyR1) on the skeletal muscle sarcoplasmic reticulum causes depletion of the stabilizing subunit calstabin1 (FKBP12) from the RyR1 macromolecular complex. This results in a sarcoplasmic reticular calcium leak via defective RyR1 channels. This pathological intracellular calcium leak contributes to reduced calcium release and decreased muscle force production. It is unknown whether RyR1 dysfunction occurs also in other muscular dystrophies. METHODS: To test this we used a murine model of Limb-Girdle muscular dystrophy, deficient in ß-sarcoglycan (Sgcb-/-). RESULTS: Skeletal muscle RyR1 from Sgcb-/- deficient mice were oxidized, nitrosylated, and depleted of the stabilizing subunit calstabin1, which was associated with increased open probability of the RyR1 channels. Sgcb-/- deficient mice exhibited decreased muscle specific force and calcium transients, and displayed reduced exercise capacity. Treating Sgcb-/- mice with the RyR stabilizing compound S107 improved muscle specific force, calcium transients, and exercise capacity. We have previously reported similar findings in mdx mice, a murine model of Duchenne muscular dystrophy. CONCLUSIONS: Our data suggest that leaky RyR1 channels may underlie multiple forms of muscular dystrophy linked to mutations in genes encoding components of the dystrophin-glycoprotein complex. A common underlying abnormality in calcium handling indicates that pharmacological targeting of dysfunctional RyR1 could be a novel therapeutic approach to improve muscle function in Limb-Girdle and Duchenne muscular dystrophies.

9.
Cell Metab ; 14(2): 196-207, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21803290

RESUMEN

Age-related loss of muscle mass and force (sarcopenia) contributes to disability and increased mortality. Ryanodine receptor 1 (RyR1) is the skeletal muscle sarcoplasmic reticulum calcium release channel required for muscle contraction. RyR1 from aged (24 months) rodents was oxidized, cysteine-nitrosylated, and depleted of the channel-stabilizing subunit calstabin1, compared to RyR1 from younger (3-6 months) adults. This RyR1 channel complex remodeling resulted in "leaky" channels with increased open probability, leading to intracellular calcium leak in skeletal muscle. Similarly, 6-month-old mice harboring leaky RyR1-S2844D mutant channels exhibited skeletal muscle defects comparable to 24-month-old wild-type mice. Treating aged mice with S107 stabilized binding of calstabin1 to RyR1, reduced intracellular calcium leak, decreased reactive oxygen species (ROS), and enhanced tetanic Ca(2+) release, muscle-specific force, and exercise capacity. Taken together, these data indicate that leaky RyR1 contributes to age-related loss of muscle function.


Asunto(s)
Envejecimiento , Calcio/metabolismo , Debilidad Muscular/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcopenia/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/patología , Mitocondrias/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/sangre , Proteínas de Unión a Tacrolimus/deficiencia , Proteínas de Unión a Tacrolimus/metabolismo , Tiazepinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA