Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Psychiatry ; 28(7): 2857-2871, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37365239

RESUMEN

Chemogenetic approaches using Designer Receptors Exclusively Activated by Designer Drugs (DREADD, a family of engineered GPCRs) were recently employed in microglia. Here, we used Cx3cr1CreER/+:R26hM4Di/+ mice to express Gi-DREADD (hM4Di) on CX3CR1+ cells, comprising microglia and some peripheral immune cells, and found that activation of hM4Di on long-lived CX3CR1+ cells induced hypolocomotion. Unexpectedly, Gi-DREADD-induced hypolocomotion was preserved when microglia were depleted. Consistently, specific activation of microglial hM4Di cannot induce hypolocomotion in Tmem119CreER/+:R26hM4Di/+ mice. Flow cytometric and histological analysis showed hM4Di expression in peripheral immune cells, which may be responsible for the hypolocomotion. Nevertheless, depletion of splenic macrophages, hepatic macrophages, or CD4+ T cells did not affect Gi-DREADD-induced hypolocomotion. Our study demonstrates that rigorous data analysis and interpretation are needed when using Cx3cr1CreER/+ mouse line to manipulate microglia.


Asunto(s)
Microglía , Neuronas , Ratones , Animales , Neuronas/metabolismo , Macrófagos
2.
PLoS Biol ; 19(3): e3001154, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33739978

RESUMEN

Spinal microglia are highly responsive to peripheral nerve injury and are known to be a key player in pain. However, there has not been direct evidence showing that selective microglial activation in vivo is sufficient to induce chronic pain. Here, we used optogenetic approaches in microglia to address this question employing CX3CR1creER/+: R26LSL-ReaChR/+ transgenic mice, in which red-activated channelrhodopsin (ReaChR) is inducibly and specifically expressed in microglia. We found that activation of ReaChR by red light in spinal microglia evoked reliable inward currents and membrane depolarization. In vivo optogenetic activation of microglial ReaChR in the spinal cord triggered chronic pain hypersensitivity in both male and female mice. In addition, activation of microglial ReaChR up-regulated neuronal c-Fos expression and enhanced C-fiber responses. Mechanistically, ReaChR activation led to a reactive microglial phenotype with increased interleukin (IL)-1ß production, which is likely mediated by inflammasome activation and calcium elevation. IL-1 receptor antagonist (IL-1ra) was able to reverse the pain hypersensitivity and neuronal hyperactivity induced by microglial ReaChR activation. Therefore, our work demonstrates that optogenetic activation of spinal microglia is sufficient to trigger chronic pain phenotypes by increasing neuronal activity via IL-1 signaling.


Asunto(s)
Dolor Crónico/etiología , Microglía/fisiología , Nervios Espinales/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Channelrhodopsins/metabolismo , Dolor Crónico/fisiopatología , Femenino , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microglía/metabolismo , Optogenética/métodos , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Nervios Espinales/fisiología
3.
Glia ; 69(7): 1637-1653, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33369790

RESUMEN

Microglia are innate immune cells of the central nervous system that sense extracellular cues. Brain injuries, inflammation, and pathology evoke dynamic structural responses in microglia, altering their morphology and motility. The dynamic motility of microglia is hypothesized to be a critical first step in sensing local alterations and engaging in pattern-specific responses. Alongside their pathological responses, microglia also sense and regulate neuronal activity. In this review, we consider the extracellular molecules, receptors, and mechanisms that allow microglia to sense neuronal activity changes under both hypoactivity and hyperactivity. We also highlight emerging in vivo evidence that microglia regulate neuronal activity, ranging from physiological to pathophysiological conditions. In addition, we discuss the emerging role of calcium signaling in microglial responses to the extracellular environment. The dynamic function of microglia in monitoring and influencing neuronal activity may be critical for brain homeostasis and circuit modification in health and disease.


Asunto(s)
Microglía , Neuronas , Encéfalo , Señalización del Calcio , Sistema Nervioso Central , Microglía/fisiología , Neuronas/fisiología
4.
J Neurosci ; 39(4): 727-742, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30504280

RESUMEN

Astrocyte expression of metabotropic glutamate receptor 5 (mGluR5) is consistently observed in resected tissue from patients with epilepsy and is equally prevalent in animal models of epilepsy. However, little is known about the functional signaling properties or downstream consequences of astrocyte mGluR5 activation during epilepsy development. In the rodent brain, astrocyte mGluR5 expression is developmentally regulated and confined in expression/function to the first weeks of life, with similar observations made in human control tissue. Herein, we demonstrate that mGluR5 expression and function dramatically increase in a mouse model of temporal lobe epilepsy. Interestingly, in both male and female mice, mGluR5 function persists in the astrocyte throughout the process of epileptogenesis following status epilepticus. However, mGluR5 expression and function are transient in animals that do not develop epilepsy over an equivalent time period, suggesting that patterns of mGluR5 expression may signify continuing epilepsy development or its resolution. We demonstrate that, during epileptogenesis, astrocytes reacquire mGluR5-dependent calcium transients following agonist application or synaptic glutamate release, a feature of astrocyte-neuron communication absent since early development. Finally, we find that the selective and conditional knock-out of mGluR5 signaling from astrocytes during epilepsy development slows the rate of glutamate clearance through astrocyte glutamate transporters under high-frequency stimulation conditions, a feature that suggests astrocyte mGluR5 expression during epileptogenesis may recapitulate earlier developmental roles in regulating glutamate transporter function.SIGNIFICANCE STATEMENT In development, astrocyte mGluR5 signaling plays a critical role in regulating structural and functional interactions between astrocytes and neurons at the tripartite synapse. Notably, mGluR5 signaling is a positive regulator of astrocyte glutamate transporter expression and function, an essential component of excitatory signaling regulation in hippocampus. After early development, astrocyte mGluR5 expression is downregulated, but reemerges in animal models of temporal lobe epilepsy (TLE) development and patient epilepsy samples. We explored the hypothesis that astrocyte mGluR5 reemergence recapitulates earlier developmental roles during TLE acquisition. Our work demonstrates that astrocytes with mGluR5 signaling during TLE development perform faster glutamate uptake in hippocampus, revealing a previously unexplored role for astrocyte mGluR5 signaling in hypersynchronous pathology.


Asunto(s)
Astrocitos/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Ácido Glutámico/metabolismo , Receptores de Ácido Kaínico/agonistas , Receptores de Ácido Kaínico/genética , Animales , Señalización del Calcio/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Simulación por Computador , Electroencefalografía , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Gliosis , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp
5.
J Neurosci ; 39(47): 9453-9464, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31597724

RESUMEN

Seizures are common in humans with various etiologies ranging from congenital aberrations to acute injuries that alter the normal balance of brain excitation and inhibition. A notable consequence of seizures is the induction of aberrant neurogenesis and increased immature neuronal projections. However, regulatory mechanisms governing these features during epilepsy development are not fully understood. Recent studies show that microglia, the brain's resident immune cell, contribute to normal neurogenesis and regulate seizure phenotypes. However, the role of microglia in aberrant neurogenic seizure contexts has not been adequately investigated. To address this question, we coupled the intracerebroventricular kainic acid model with current pharmacogenetic approaches to eliminate microglia in male mice. We show that microglia promote seizure-induced neurogenesis and subsequent seizure-induced immature neuronal projections above and below the pyramidal neurons between the DG and the CA3 regions. Furthermore, we identify microglial P2Y12 receptors (P2Y12R) as a participant in this neurogenic process. Together, our results implicate microglial P2Y12R signaling in epileptogenesis and provide further evidence for targeting microglia in general and microglial P2Y12R in specific to ameliorate proepileptogenic processes.SIGNIFICANCE STATEMENT Epileptogenesis is a process by which the brain develops epilepsy. Several processes have been identified that confer the brain with such epileptic characteristics, including aberrant neurogenesis and increased immature neuronal projections. Understanding the mechanisms that promote such changes is critical in developing therapies to adequately restrain epileptogenesis. We investigated the role of purinergic P2Y12 receptors selectively expressed by microglia, the resident brain immune cells. We report, for the first time, that microglia in general and microglial P2Y12 receptors in specific promote both aberrant neurogenesis and increased immature neuronal projections. These results indicate that microglia enhance epileptogenesis by promoting these processes and suggest that targeting this immune axis could be a novel therapeutic strategy in the clinic.


Asunto(s)
Microglía/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Receptores Purinérgicos P2Y12/biosíntesis , Convulsiones/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/inmunología , Neuronas/inmunología , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/inmunología , Convulsiones/genética , Convulsiones/inmunología
6.
Neurobiol Dis ; 64: 98-106, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24412221

RESUMEN

Viral infection of the CNS can result in encephalitis and acute seizures, increasing the risk for later-life epilepsy. We have previously characterized a novel animal model of temporal lobe epilepsy that recapitulates key sequela in the development of epilepsy following viral infection. C57BL/6J mice inoculated with the Daniel's strain of Theiler's Murine Encephalomyelitis Virus (TMEV; 3×10(5) PFU, i.c.) display acute limbic seizures that secondarily generalize. A majority of acutely seized animals develop spontaneous seizures weeks to months later. As part of our investigation, we sought to assess behavioral comorbidity following TMEV inoculation. Anxiety, depression, cognitive impairment, and certain psychoses are diagnosed in persons with epilepsy at rates far more frequent than in the general population. We used a battery of behavioral tests to assess anxiety, depression, cognitive impairment, and general health in acutely seized animals inoculated with TMEV and compared behavioral outcomes against age-matched controls receiving a sham injection. We determined that TMEV-seized animals are less likely to move through the exposed center of an open field and are less likely to enter into the lighted half of a light/dark box; both behaviors may be indicative of anxiety-like behavior. TMEV-seized animals also display early and persistent reductions in novel object exploration during novel object place tasks and do not improve in their ability to find a hidden escape platform in Morris water maze testing, indicative of impairment in episodic and spatial memory, respectively. Cresyl violet staining at 35 and 250 days after injection reveals bilateral reductions in hippocampal area, with extensive sclerosis of CA1 evident bilaterally along the rostral-caudal axis. Early and persistent behavioral changes in the TMEV model provide surrogate markers for assessing disease progression as well as endpoints in screening for the efficacy of novel compounds to manage both seizure burden and comorbid conditions.


Asunto(s)
Trastornos de Ansiedad/etiología , Trastornos del Conocimiento/etiología , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/psicología , Hipocampo/patología , Convulsiones/etiología , Enfermedad Aguda , Animales , Trastornos de Ansiedad/patología , Conducta Animal , Región CA1 Hipocampal/patología , Comorbilidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Epilepsia del Lóbulo Temporal/patología , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Pruebas Neuropsicológicas , Esclerosis/patología , Convulsiones/patología , Theilovirus , Factores de Tiempo
7.
Trends Neurosci ; 47(3): 181-194, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38245380

RESUMEN

Microglia are the primary immune cells of the CNS, contributing to both inflammatory damage and tissue repair in neurological disorder. In addition, emerging evidence highlights the role of homeostatic microglia in regulating neuronal activity, interacting with synapses, tuning neural circuits, and modulating behaviors. Herein, we review how microglia sense and regulate neuronal activity through synaptic interactions, thereby directly engaging with neural networks and behaviors. We discuss current studies utilizing microglial optogenetic and chemogenetic approaches to modulate adult neural circuits. These manipulations of microglia across different CNS regions lead to diverse behavioral consequences. We propose that spatial heterogeneity of microglia-neuron interaction lays the groundwork for understanding diverse functions of microglia in neural circuits and behaviors.


Asunto(s)
Microglía , Enfermedades del Sistema Nervioso , Humanos , Microglía/fisiología , Encéfalo/fisiología , Sinapsis/fisiología , Neuronas/fisiología , Plasticidad Neuronal/fisiología
8.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405754

RESUMEN

Microglia actively survey the brain and dynamically interact with neurons to maintain brain homeostasis. Microglial Gi-protein coupled receptors (Gi-GPCRs) play a critical role in microglia-neuron communications. However, the impact of temporally activating microglial Gi signaling on microglial dynamics and neuronal activity in the homeostatic brain remains largely unknown. In this study, we employed Gi-based Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) to selectively and temporally modulate microglial Gi signaling pathway. By integrating this chemogenetic approach with in vivo two-photon imaging, we observed that exogenous activation of microglial Gi signaling transiently inhibited microglial process dynamics, reduced neuronal activity, and impaired neuronal synchronization. These altered neuronal functions were associated with a decrease in interactions between microglia and neuron somata. Altogether, this study demonstrates that acute, exogenous activation of microglial Gi signaling can regulate neuronal circuit function, offering a potential pharmacological target for neuromodulation through microglia.

9.
Nat Neurosci ; 27(3): 449-461, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177340

RESUMEN

Microglia are resident immune cells of the central nervous system and play key roles in brain homeostasis. During anesthesia, microglia increase their dynamic process surveillance and interact more closely with neurons. However, the functional significance of microglial process dynamics and neuronal interaction under anesthesia is largely unknown. Using in vivo two-photon imaging in mice, we show that microglia enhance neuronal activity after the cessation of isoflurane anesthesia. Hyperactive neuron somata are contacted directly by microglial processes, which specifically colocalize with GABAergic boutons. Electron-microscopy-based synaptic reconstruction after two-photon imaging reveals that, during anesthesia, microglial processes enter into the synaptic cleft to shield GABAergic inputs. Microglial ablation or loss of microglial ß2-adrenergic receptors prevents post-anesthesia neuronal hyperactivity. Our study demonstrates a previously unappreciated function of microglial process dynamics, which enable microglia to transiently boost post-anesthesia neuronal activity by physically shielding inhibitory inputs.


Asunto(s)
Anestesia , Microglía , Ratones , Animales , Microglía/fisiología , Encéfalo/fisiología , Sinapsis/fisiología , Neuronas/fisiología
10.
Neuron ; 112(12): 1959-1977.e10, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38614103

RESUMEN

Microglial calcium signaling is rare in a baseline state but strongly engaged during early epilepsy development. The mechanism(s) governing microglial calcium signaling are not known. By developing an in vivo uridine diphosphate (UDP) fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP can signal through the microglial-enriched P2Y6 receptor to increase calcium activity during epileptogenesis. P2Y6 calcium activity is associated with lysosome biogenesis and enhanced production of NF-κB-related cytokines. In the hippocampus, knockout of the P2Y6 receptor prevents microglia from fully engulfing neurons. Attenuating microglial calcium signaling through calcium extruder ("CalEx") expression recapitulates multiple features of P2Y6 knockout, including reduced lysosome biogenesis and phagocytic interactions. Ultimately, P2Y6 knockout mice retain more CA3 neurons and better cognitive task performance during epileptogenesis. Our results demonstrate that P2Y6 signaling impacts multiple aspects of myeloid cell immune function during epileptogenesis.


Asunto(s)
Señalización del Calcio , Epilepsia , Ratones Noqueados , Microglía , Fagocitosis , Receptores Purinérgicos P2 , Animales , Microglía/metabolismo , Microglía/inmunología , Ratones , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2/genética , Señalización del Calcio/fisiología , Epilepsia/metabolismo , Epilepsia/inmunología , Epilepsia/genética , Uridina Difosfato/metabolismo , Lisosomas/metabolismo , Neuronas/metabolismo , Ratones Endogámicos C57BL , Masculino , Hipocampo/metabolismo , Neuroinmunomodulación/fisiología
11.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398001

RESUMEN

Microglial calcium signaling is rare in a baseline state but shows strong engagement during early epilepsy development. The mechanism and purpose behind microglial calcium signaling is not known. By developing an in vivo UDP fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP signals to the microglial P2Y6 receptor for broad increases in calcium signaling during epileptogenesis. UDP-P2Y6 signaling is necessary for lysosome upregulation across limbic brain regions and enhances production of pro-inflammatory cytokines-TNFα and IL-1ß. Failures in lysosome upregulation, observed in P2Y6 KO mice, can also be phenocopied by attenuating microglial calcium signaling in Calcium Extruder ("CalEx") mice. In the hippocampus, only microglia with P2Y6 expression can perform full neuronal engulfment, which substantially reduces CA3 neuron survival and impairs cognition. Our results demonstrate that calcium activity, driven by UDP-P2Y6 signaling, is a signature of phagocytic and pro-inflammatory function in microglia during epileptogenesis.

12.
J Exp Med ; 219(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36107206

RESUMEN

TREM2 is exclusively expressed by microglia in the brain and is strongly linked to the risk for Alzheimer's disease (AD). As microglial responses modulated by TREM2 are central to AD pathogenesis, enhancing TREM2 signaling has been explored as an AD therapeutic strategy. However, the effective therapeutic window targeting TREM2 is unclear. Here, by using microglia-specific inducible mouse models overexpressing human wild-type TREM2 (TREM2-WT) or R47H risk variant (TREM2-R47H), we show that TREM2-WT expression reduces amyloid deposition and neuritic dystrophy only during the early amyloid seeding stage, whereas TREM2-R47H exacerbates amyloid burden during the middle amyloid rapid growth stage. Single-cell RNA sequencing reveals suppressed disease-associated microglia (DAM) signature and reduced DAM population upon TREM2-WT expression in the early stage, whereas upregulated antigen presentation pathway is detected with TREM2-R47H expression in the middle stage. Together, our findings highlight the dynamic effects of TREM2 in modulating AD pathogenesis and emphasize the beneficial effect of enhancing TREM2 function in the early stage of AD development.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Amiloidosis/patología , Animales , Encéfalo/patología , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
13.
Elife ; 92020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32716294

RESUMEN

Microglial calcium signaling underlies a number of key physiological and pathological processes in situ, but has not been studied in vivo in awake mice. Using multiple GCaMP6 variants targeted to microglia, we assessed how microglial calcium signaling responds to alterations in neuronal activity across a wide range. We find that only a small subset of microglial somata and processes exhibited spontaneous calcium transients in a chronic window preparation. However, hyperactive shifts in neuronal activity (kainate status epilepticus and CaMKIIa Gq DREADD activation) triggered increased microglial process calcium signaling, often concomitant with process extension. Additionally, hypoactive shifts in neuronal activity (isoflurane anesthesia and CaMKIIa Gi DREADD activation) also increased microglial process calcium signaling. Under hypoactive neuronal conditions, microglia also exhibited process extension and outgrowth with greater calcium signaling. Our work reveals that microglia have highly distinct microdomain signaling, and that processes specifically respond to bi-directional shifts in neuronal activity through increased calcium signaling.


Asunto(s)
Señalización del Calcio/fisiología , Ácido Kaínico/metabolismo , Microglía/fisiología , Neuronas/fisiología , Estado Epiléptico/fisiopatología , Animales , Femenino , Masculino , Ratones
14.
Mol Brain ; 12(1): 71, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426845

RESUMEN

The P2Y12 receptor (P2Y12R) is a purinoceptor that is selectively expressed in microglia in the central nervous system. As a signature receptor, microglial P2Y12R mediates process chemotaxis towards ADP/ATP gradients and is engaged in several neurological diseases including chronic pain, stroke and seizures. However, the role of microglial P2Y12R in regulating neuronal excitability and innate behaviors is not fully understood. Here, we generated P2Y12-floxed mice to delete microglial P2Y12R beginning in development (CX3CR1Cre/+:P2Y12f/f; "constitutive knockout"), or after normal development in adult mice (CX3CR1CreER/+:P2Y12f/f; "induced knockout"). Using a battery of behavioral tests, we found that both constitutive and induced P2Y12R knockout mice exhibited innate fear but not learned fear behaviors. After mice were exposed to the elevated plus maze, the c-fos expression in ventral hippocampus CA1 neurons was robustly increased in P2Y12R knockout mice compared with wild-type mice. Consistently, using whole cell patch clamp recording, we found the excitability of ventral hippocampus CA1 neurons was increased in the P2Y12R knockout mice. The results suggest that microglial P2Y12R regulates neuronal excitability and innate fear behaviors in developing and adult mice.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Miedo/fisiología , Microglía/metabolismo , Neuronas/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Animales , Eliminación de Gen , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-fos/metabolismo
15.
Nat Neurosci ; 22(11): 1771-1781, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31636449

RESUMEN

Microglia dynamically survey the brain parenchyma. Microglial processes interact with neuronal elements; however, what role neuronal network activity plays in regulating microglial dynamics is not entirely clear. Most studies of microglial dynamics use either slice preparations or in vivo imaging in anesthetized mice. Here we demonstrate that microglia in awake mice have a relatively reduced process area and surveillance territory and that reduced neuronal activity under general anesthesia increases microglial process velocity, extension and territory surveillance. Similarly, reductions in local neuronal activity through sensory deprivation or optogenetic inhibition increase microglial process surveillance. Using pharmacological and chemogenetic approaches, we demonstrate that reduced norepinephrine signaling is necessary for these increases in microglial process surveillance. These findings indicate that under basal physiological conditions, noradrenergic tone in awake mice suppresses microglial process surveillance. Our results emphasize the importance of awake imaging for studying microglia-neuron interactions and demonstrate how neuronal activity influences microglial process dynamics.


Asunto(s)
Microglía/fisiología , Neuronas/fisiología , Norepinefrina/fisiología , Corteza Somatosensorial/fisiología , Animales , Encéfalo/efectos de los fármacos , Receptor 1 de Quimiocinas CX3C/genética , Clozapina/análogos & derivados , Clozapina/farmacología , Isoflurano/farmacología , Ratones , Ratones Noqueados , Ratones Transgénicos , Microglía/efectos de los fármacos , Microinyecciones , Muscimol/farmacología , Norepinefrina/farmacología , Optogenética , Propanolaminas/farmacología , Propranolol/farmacología , Receptores Purinérgicos P2Y12/genética , Privación Sensorial/fisiología , Corteza Somatosensorial/efectos de los fármacos , Tetrodotoxina/farmacología , Vigilia
16.
Cell Rep ; 27(13): 3844-3859.e6, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242418

RESUMEN

Spinal long-term potentiation (LTP) at C-fiber synapses is hypothesized to underlie chronic pain. However, a causal link between spinal LTP and chronic pain is still lacking. Here, we report that high-frequency stimulation (HFS; 100 Hz, 10 V) of the mouse sciatic nerve reliably induces spinal LTP without causing nerve injury. LTP-inducible stimulation triggers chronic pain lasting for more than 35 days and increases the number of calcitonin gene-related peptide (CGRP) terminals in the spinal dorsal horn. The behavioral and morphological changes can be prevented by blocking NMDA receptors, ablating spinal microglia, or conditionally deleting microglial brain-derived neurotrophic factor (BDNF). HFS-induced spinal LTP, microglial activation, and upregulation of BDNF are inhibited by antibodies against colony-stimulating factor 1 (CSF-1). Together, our results show that microglial CSF1 and BDNF signaling are indispensable for spinal LTP and chronic pain. The microglia-dependent transition of synaptic potentiation to structural alterations in pain pathways may underlie pain chronicity.


Asunto(s)
Dolor Crónico/metabolismo , Potenciación a Largo Plazo , Microglía/metabolismo , Plasticidad Neuronal , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Dolor Crónico/genética , Dolor Crónico/patología , Ratones , Ratones Transgénicos , Microglía/patología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Asta Dorsal de la Médula Espinal/patología
17.
Neurosci Bull ; 38(7): 834-836, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35355226
18.
Exp Neurol ; 279: 116-126, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26896834

RESUMEN

More efficient or translationally relevant approaches are needed to model acquired temporal lobe epilepsy (TLE) in genetically tractable mice. The high costs associated with breeding and maintaining transgenic, knock-in, or knock-out lines place a high value on the efficiency of induction and animal survivability. Herein, we describe our approaches to model acquired epilepsy in C57BL/6J mice using repeated, low-dose kainate (KA) administration paradigms. Four paradigms (i.p.) were tested for their ability to induce status epilepticus (SE), temporal lobe pathology, and the development of epilepsy. All four paradigms reliably induce behavioral and/or electrographic SE without mortality over a 7d period. Two of the four paradigms investigated produce features indicative of TLE pathology, including hippocampal cell death, widespread astrogliosis, and astrocyte expression of mGluR5, a feature commonly reported in TLE models. Three of the investigated paradigms were able to produce aberrant electrographic features, such as interictal spiking in cortex. However, only one paradigm, previously published by others, produces spontaneous recurrent seizures over an eight week period. Presentation of spontaneous seizures is rare (N=2/14), with epilepsy preferentially developing in animals having a high number of seizures during SE. Overall, repeated, low-dose KA administration improves the efficiency and pathological relevance of a systemic KA insult, but does not produce a robust epilepsy phenotype under the experimental paradigms described herein.


Asunto(s)
Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/patología , Agonistas de Aminoácidos Excitadores/toxicidad , Ácido Kaínico/toxicidad , Animales , Astrocitos/patología , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Electroencefalografía , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/inducido químicamente , Gliosis/patología , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor del Glutamato Metabotropico 5/biosíntesis , Convulsiones/inducido químicamente , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA