Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Invest New Drugs ; 40(1): 30-41, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478029

RESUMEN

Breast cancer is the leading cause of cancer death among women worldwide. For this reason, the development of new therapies is still essential. In this work we have analyzed the antitumor potential of levoglucosenone, a chiral building block derived from the pyrolysis of cellulose-containing materials such as soybean hulls, and three structurally related analogues. Employing human and murine mammary cancer models, we have evaluated the effect of our compounds on cell viability through MTS assay, apoptosis induction by acridine orange/ethidium bromide staining and/or flow cytometry and the loss of mitochondrial potential by tetramethylrhodamine methyl ester staining. Autophagy and senescence induction were also evaluated by Western blot and ß-galactosidase activity respectively. Secreted metalloproteases activity was determined by quantitative zymography. Migratory capacity was assessed by wound healing assays while invasive potential was analyzed using Matrigel-coated transwell chambers. In vivo studies were also performed to evaluate subcutaneous tumor growth and experimental lung colonization. All compounds impaired in vitro proliferation with IC50 values in a range of low micromolar. Apoptosis was identified as the main mechanism responsible for the reduction of monolayer cell content induced by the compounds without detecting modulations of autophagy or senescence processes. Two of the four compounds (levoglucosenone and its brominated variant) were able to modulate in vitro events associated with tumor progression, such as migratory potential, invasiveness, and proteases secretion. Furthermore, tumor volume and metastatic spread were significantly reduced in vivo after the treatment these two compounds. Here, we could obtain from soybean hulls, a material with almost no commercial value, a variety of chemical compounds useful for breast cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/patología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Glucosa/análogos & derivados , Animales , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Celulosa/química , Relación Dosis-Respuesta a Droga , Glucosa/química , Glucosa/farmacología , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos BALB C , Carga Tumoral/efectos de los fármacos
2.
Nutr Cancer ; 72(6): 1004-1017, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31573355

RESUMEN

Cancer stem cells (CSCs) are an important player in the resistance of cancers to therapy. In this work, we determined the flavonoids composition and biological action of Aloysia polystachya (AP) extracts in colorectal cancer. The chemical characterization of extracts was performed by HPLC. Assays of cytotoxicity, apoptosis, migration and invasion, metalloproteases activity, clonogenic growth, tumorspheres formation, Hoechts efflux, pluripotency marker expression and sensitization to chemotherapeutic drugs were performed in vitro in human HCT116 and murine CT26 colorectal cancer cells. The AP toxicity and effect in tumor growth administered alone or in combination with 5- Fluorouracile was analyzed in vivo, including histopathological studies. We found that AP extracts induced in vitro the apoptosis of colorectal cancer cell lines decreasing the CSC proportion. Moreover, they were capable to kill 5-Fluorouracile resistant side population cells. At not toxic doses in vivo, AP extracts inhibited tumor growth. Regarding the ability to reduce the CSC population, AP extracts deserves to be investigated as a useful therapy for colorectal cancer treatment.


Asunto(s)
Neoplasias Colorrectales , Células Madre Neoplásicas , Animales , Apoptosis , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Ratones , Extractos Vegetales/farmacología , Verbenaceae
4.
Cancer Cell Int ; 17: 42, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28373828

RESUMEN

BACKGROUND: Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths worldwide. Up to 80% of cancer patients are classified as non-small-cell lung cancer (NSCLC) and cisplatin remains as the gold standard chemotherapy treatment, despite its limited efficacy due to both intrinsic and acquired resistance. The CK2 is a Ser/Thr kinase overexpressed in various types of cancer, including lung cancer. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to CK2 substrates thus preventing the enzyme activity. The aim of this work was to analyze the effects of CIGB-300 treatment targeting CK2-dependent signaling pathways in NSCLC cell lines and whether it may help improve current chemotherapy treatment. METHODS: The human NSCLC cell lines NCI-H125 and NIH-A549 were used. Tumor spheroids were obtained through the hanging-drop method. A cisplatin resistant A549 cell line was obtained by chronic administration of cisplatin. Cell viability, apoptosis, immunoblotting, immunofluorescence and luciferase reporter assays were used to assess CIGB-300 effects. A luminescent assay was used to monitor proteasome activity. RESULTS: We demonstrated that CIGB-300 induces an anti-proliferative response both in monolayer- and three-dimensional NSCLC models, presenting rapid and complete peptide uptake. This effect was accompanied by the inhibition of the CK2-dependent canonical NF-κB pathway, evidenced by reduced RelA/p65 nuclear levels and NF-κB protein targets modulation in both lung cancer cell lines, as well as conditionally reduced NF-κB transcriptional activity. In addition, NF-κB modulation was associated with enhanced proteasome activity, possibly through its α7/C8 subunit. Neither the peptide nor a classical CK2 inhibitor affected cytoplasmic ß-CATENIN basal levels. Given that NF-κB activation has been linked to cisplatin-induced resistance, we explored whether CIGB-300 could bring additional therapeutic benefits to the standard cisplatin treatment. We established a resistant cell line that showed higher p65 nuclear levels after cisplatin treatment as compared with the parental cell line. Remarkably, the cisplatin-resistant cell line became more sensitive to CIGB-300 treatment. CONCLUSIONS: Our data provide new insights into CIGB-300 mechanism of action and suggest clinical potential on current NSCLC therapy.

5.
J Cell Biochem ; 117(3): 730-40, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26335446

RESUMEN

Protein kinase C (PKC) is a family of serine/threonine kinases that regulate diverse cellular functions including cell death, proliferation, and survival. Recent studies have reported that PKCδ, are involved in apoptosis or autophagy induction. In the present study we focused on how PKCδ regulates proliferation and cancer stem cell (CSC) properties of the hormone-independent mammary cancer cell line LM38-LP, using pharmacological and genetic approaches. We found that pharmacological inhibition of PKCδ, by Rottlerin treatment, impairs in vitro LM38-LP proliferation through cell cycle arrest, inducing the formation of cytoplasmic-vacuoles. Using immunofluorescence we confirmed that Rottlerin treatment induced the apparition of LC3 dots in cell cytoplasm, and increased autophagy flux. On the other side, the same treatment increased CSC growth rate and self-renewal. Furthermore, Rottlerin pre-treatment induced in CSC the development of a "grape-like" morphology when they are growing in 3D cultures (Matrigel), usually associated with a malignant phenotype, as well as an increase in the number of experimental lung metastasis when these cells were inoculated in vivo. The PKCδ knockdown, by RNA interference, induced autophagy and increased CSC number, indicating that these effects are indeed exerted through a PKCδ dependent pathway. Finally, the increase in the number of mammospheres could be reversed by a 3MA treatment, suggesting that autophagy mechanism is necessary for the increased of CSC self-renewal induced by PKCδ inhibition. Here we demonstrated that PKCδ activity exerts a dual role through the autophagy mechanism, decreasing proliferative capacity of mammary tumor cells but also regulating tumor stem cell self-renewal.


Asunto(s)
Autofagia , Neoplasias Pulmonares/enzimología , Neoplasias Mamarias Experimentales/enzimología , Células Madre Neoplásicas/fisiología , Proteína Quinasa C-delta/metabolismo , Acetofenonas/farmacología , Animales , Antineoplásicos/farmacología , Benzopiranos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Trasplante de Neoplasias , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/genética , Inhibidores de Proteínas Quinasas/farmacología
6.
Mol Carcinog ; 54(10): 1110-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24838400

RESUMEN

It has been established that retinoids exert some of their effects on cell differentiation and malignant phenotype reversion through the interaction with different members of the protein kinase C (PKC) family. Till nowadays the nature and extension of this interaction is not well understood. Due to the cytostatic and differentiating effects of retinoids, in the present study we propose to evaluate whether the crosstalk between the retinoid system and the PKC pathway could become a possible target for breast cancer treatment. We could determine that ATRA (all-trans retinoic) treatment showed a significant growth inhibition due to (G1 or G2) cell cycle arrest both in LM3 and SKBR3, a murine and human mammary cell line respectively. ATRA also induced a remarkable increase in PKCα and PKCδ expression and activity. Interestingly, the pharmacological inhibition of these two PKC isoforms prevented the activation of retinoic acid receptors (RARs) by ATRA, indicating that both PKC isoforms are required for RARs activation. Moreover, PKCδ inhibition also impaired ATRA-induced RARα translocation to the nucleus. In vivo assays revealed that a combined treatment using ATRA and PKCα inhibitors prevented lung metastatic dissemination in an additive way. Our results clearly indicate that ATRA modulates the expression and activity of different PKCs. Besides inducing cell arrest, the activity of both PKC is necessary for the induction of the retinoic acid system. The combined ATRA and PKCα inhibitors could be an option for the hormone-independent breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-delta/metabolismo , Receptores de Ácido Retinoico/metabolismo , Tretinoina/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-delta/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Células Tumorales Cultivadas
7.
J Cell Physiol ; 229(11): 1660-72, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24615622

RESUMEN

Cachexia is a relevant comorbid condition of chronic diseases including cancer. Inflammation, oxidative stress, autophagy, ubiquitin-proteasome system, nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPK) are involved in the pathophysiology of cancer cachexia. Currently available treatment is limited and data demonstrating effectiveness in in vivo models are lacking. Our objectives were to explore in respiratory and limb muscles of lung cancer (LC) cachectic mice whether proteasome, NF-κB, and MAPK inhibitors improve muscle mass and function loss through several molecular mechanisms. Body and muscle weights, limb muscle force, protein degradation and the ubiquitin-proteasome system, signaling pathways, oxidative stress and inflammation, autophagy, contractile and functional proteins, myostatin and myogenin, and muscle structure were evaluated in the diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing cachectic mice (BALB/c), with and without concomitant treatment with NF-κB (sulfasalazine), MAPK (U0126), and proteasome (bortezomib) inhibitors. Compared to control animals, in both respiratory and limb muscles of LC cachectic mice: muscle proteolysis, ubiquitinated proteins, autophagy, myostatin, protein oxidation, FoxO-1, NF-κB and MAPK signaling pathways, and muscle abnormalities were increased, while myosin, creatine kinase, myogenin, and slow- and fast-twitch muscle fiber size were decreased. Pharmacological inhibition of NF-κB and MAPK, but not the proteasome system, induced in cancer cachectic animals, a substantial restoration of muscle mass and force through a decrease in muscle protein oxidation and catabolism, myostatin, and autophagy, together with a greater content of myogenin, and contractile and functional proteins. Attenuation of MAPK and NF-κB signaling pathway effects on muscles is beneficial in cancer-induced cachexia.


Asunto(s)
Autofagia , Caquexia/tratamiento farmacológico , Caquexia/etiología , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/tratamiento farmacológico , Debilidad Muscular/tratamiento farmacológico , Músculo Esquelético/patología , Proteolisis , Animales , Autofagia/efectos de los fármacos , Ácidos Borónicos/farmacología , Ácidos Borónicos/uso terapéutico , Bortezomib , Butadienos/farmacología , Butadienos/uso terapéutico , Línea Celular Tumoral , Inflamación/complicaciones , Inflamación/patología , Inflamación/fisiopatología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/fisiopatología , Ratones , Ratones Endogámicos BALB C , Contracción Muscular/efectos de los fármacos , Proteínas Musculares/metabolismo , Debilidad Muscular/etiología , Debilidad Muscular/patología , Debilidad Muscular/fisiopatología , Músculo Esquelético/anomalías , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , FN-kappa B/metabolismo , Nitrilos/farmacología , Nitrilos/uso terapéutico , Oxidación-Reducción , Proteolisis/efectos de los fármacos , Pirazinas/farmacología , Pirazinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Sulfasalazina/farmacología , Sulfasalazina/uso terapéutico , Tirosina/metabolismo , Aumento de Peso/efectos de los fármacos
8.
Exp Physiol ; 98(9): 1349-65, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23625954

RESUMEN

NEW FINDINGS: What is the central question of this study? We explored whether experimental cancer-induced cachexia may alter mitochondrial respiratory chain (MRC) complexes and oxygen uptake in respiratory and peripheral muscles,and whether signalling pathways, proteasome and oxidative stress influence that process. What is the main finding and what is its importance? In cancer cachectic mice, MRC complexes and oxygen consumption were decreased in the diaphragm and gastrocnemius. Blockade of nuclear factor-κB and mitogen-activated protein kinase actions partly restored the muscle mass and force and corrected the MRC dysfunction,while concomitantly reducing tumour burden. Antioxidants improved mitochondrial oxygen consumption without eliciting effects on the loss of muscle mass and force or the tumour size,whereas bortezomib reduced tumour burden without influencing muscle mass and strength or MRC function. Abnormalities in mitochondrial content, morphology and function have been reported in several muscle-wasting conditions. We specifically explored whether experimental cancer-induced cachexia may alter mitochondrial respiratory chain (MRC) complexes and oxygen uptake in respiratory and peripheral muscles, and whether signalling pathways, proteasomes and oxidative stress may influence that process. We evaluated complex I, II and IV enzyme activities (specific activity assays) and MRC oxygen consumption (polarographic measurements) in diaphragm and gastrocnemius of cachectic mice bearing the LP07 lung tumour, with and without treatment with N-acetylcysteine, bortezomib and nuclear factor-κB (sulfasalazine) and mitogen-activated protein kinases (MAPK, U0126) inhibitors (n = 10 per group for all groups). Whole-body and muscle weights and limb muscle force were also assessed in all rodents at baseline and after 1 month. Compared with control animals, cancer cachectic mice showed a significant reduction in body weight gain, smaller sizes of the diaphragm and gastrocnemius, lower muscle strength, decreased activity of complexes I, II and IV and decreased oxygen consumption in both muscles. Blockade of nuclear factor-κB and MAPK actions restored muscle mass and force and corrected the MRC dysfunction in both muscles, while partly reducing tumour burden. Antioxidants improved mitochondrial oxygen uptake without eliciting significant effects on the loss of muscle mass and force or tumour size, whereas the proteasome inhibitor reduced tumour burden without significantly influencing muscle mass and strength or mitochondrial function. In conclusion, nuclear factor-κB and MAPK signalling pathways modulate muscle mass and performance and MRC function of respiratory and limb muscles in this model of experimental cancer cachexia, thus offering targets for therapeutic intervention.


Asunto(s)
Caquexia/fisiopatología , Diafragma/fisiopatología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Neoplasias Pulmonares/fisiopatología , Enfermedades Mitocondriales/fisiopatología , Músculo Esquelético/fisiopatología , Acetilcisteína/uso terapéutico , Animales , Antioxidantes/uso terapéutico , Ácidos Borónicos/uso terapéutico , Bortezomib , Diafragma/patología , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Fuerza Muscular , FN-kappa B/antagonistas & inhibidores , FN-kappa B/uso terapéutico , Estrés Oxidativo , Pirazinas/uso terapéutico
9.
IUBMB Life ; 64(1): 18-26, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22095874

RESUMEN

The protein kinase C (PKC) family of serine/threonine kinases has been intensively studied in cancer since their discovery as major receptors for the tumor-promoting phorbol esters. The contribution of each individual PKC isozyme to malignant transformation is only partially understood, but it is clear that each PKC plays different role in cancer progression. PKC deregulation is a common phenomenon observed in breast cancer, and PKC expression and localization are usually dynamically regulated during mammary gland differentiation and involution. In fact, the overexpression of several PKCs has been reported in malignant human breast tissue and breast cancer cell lines. In this review, we summarize the knowledge available on the specific roles of PKC isoforms in the development, progression, and metastatic dissemination of mammary cancer. We also discuss the role of PKC isoforms as therapeutic targets, and their potential as markers for prognosis or treatment response.


Asunto(s)
Neoplasias de la Mama/enzimología , Proteína Quinasa C/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Isoenzimas/metabolismo , Fenotipo , Proteína Quinasa C/química , Proteína Quinasa C/genética , Estructura Terciaria de Proteína
10.
Breast Cancer Res Treat ; 126(3): 577-87, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20512658

RESUMEN

Doxorubicin is an anti-tumor antibiotic widely used in the management of cancer patients. Its main mechanism of action involves the generation of DNA damage and the inhibition of topoisomerase II, promoting apoptosis. AD 198 is a novel doxorubicin analog devoid of DNA binding and topoisomerase II inhibitory capacities. It has been proposed that AD 198 induces apoptosis by activating protein kinase C delta (PKCδ); a PKC isoform described as growth inhibitory in a large number of cell types. We have previously demonstrated that PKCδ overexpression in NMuMG cells induced the opposite effect, promoting proliferation and cell survival. In this study, we found that PKCδ overexpression confers an enhanced cell death resistance against AD 198 cytotoxic effect and against AD 288, another doxorubicin analog that preserves its mechanism of action. These resistances involve PKCδ-mediated activation of two well-known survival pathways: Akt and NF-κB. While the resistance against AD 198 could be abrogated upon the inhibition of either Akt or NF-κB pathways, only NF-κB inhibition could revert the resistance to AD 288. Altogether, our results indicate that PKCδ increases cell death resistance against different apoptosis inductors, independently of their mechanism of action, through a differential modulation of Akt and NF-κB pathways. Our study contributes to a better understanding of the mechanisms involved in PKCδ-induced resistance and may greatly impact in the rationale design of isozyme-specific PKC modulators as therapeutic agents.


Asunto(s)
Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Proteína Quinasa C-delta/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , ADN-Topoisomerasas de Tipo II/química , Femenino , Perfilación de la Expresión Génica , Neoplasias Mamarias Animales/metabolismo , Ratones , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fracciones Subcelulares
11.
Sci Rep ; 11(1): 6044, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723318

RESUMEN

Breast cancer is the leading cause of cancer death among women worldwide. Blocking a single signaling pathway is often an ineffective therapy, especially in the case of aggressive or drug-resistant tumors. Since we have previously described the mechanism involved in the crosstalk between Retinoic Acid system and protein kinase C (PKC) pathway, the rationale of our study was to evaluate the effect of combining all-trans-retinoic acid (ATRA) with a classical PCK inhibitor (Gö6976) in preclinical settings. Employing hormone-independent mammary cancer models, Gö6976 and ATRA combined treatment induced a synergistic reduction in proliferative potential that correlated with an increased apoptosis and RARs modulation towards an anti-oncogenic profile. Combined treatment also impairs growth, self-renewal and clonogenicity potential of cancer stem cells and reduced tumor growth, metastatic spread and cancer stem cells frequency in vivo. An in-silico analysis of "Kaplan-Meier plotter" database indicated that low PKCα together with high RARα mRNA expression is a favorable prognosis factor for hormone-independent breast cancer patients. Here we demonstrate that a classical PKC inhibitor potentiates ATRA antitumor effects also targeting cancer stem cells growth, self-renewal and frequency.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Mamarias Experimentales , Proteínas de Neoplasias , Células Madre Neoplásicas/enzimología , Proteína Quinasa C beta , Proteína Quinasa C-alfa , Animales , Línea Celular Tumoral , Femenino , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/enzimología , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Proteína Quinasa C beta/antagonistas & inhibidores , Proteína Quinasa C beta/metabolismo , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Tretinoina/farmacología
12.
Mol Carcinog ; 49(4): 386-97, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20191608

RESUMEN

Neural cell adhesion molecule (NCAM) is involved in cell growth, migration, and differentiation. Its expression and/or polysialylation appear to be deregulated in many different cancer types. We employed the lung tumor cell line LP07, syngeneic in BALB/c mice to investigate the role of NCAM in malignant progression. LP07 cells express the three main NCAM isoforms, all of them polysialylated. This cells line, pretreated with an anti-NCAM antibody and inoculated intravenously (i.v.) into syngeneic mice, developed less and smaller lung metastases. In vitro studies showed that NCAM bound antibody inhibited cell growth, mainly due to an increase in apoptosis, associated with a decrease of cyclin D1 and enhanced expression of active caspase 3 and caspase 9. Anti-NCAM-treated LP07 cells showed impairment in their ability to migrate and adhere to several extracellular matrix components. Secreted uPA activity was also reduced. NCAM-140 knocked-down by siRNA in LP07 cells pretreated or not with anti-NCAM showed an impaired metastasizing ability upon i.v. inoculation into mice. These results suggest that anti-NCAM treatment could be mimicking homophilic trans-interactions and NCAM-140 knocked-down impairs heterophilic interactions, both leading to inhibition of metastatic dissemination. The involvement of NCAM in lung tumor progression was confirmed in human NSCLC tumors. Sixty percent of the cases expressed NCAM at tumor cell level. A multivariate analysis indicated that NCAM expression was associated with a shorter overall survival in this homogeneous series of Stages I and II NSCLC patients. NCAM may be able to modulate mechanisms involved in lung carcinoma progression and represents an attractive target to control metastatic progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Modelos Animales de Enfermedad , Neoplasias Pulmonares/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Adhesión Celular/genética , Adhesión Celular/inmunología , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/inmunología , Proliferación Celular , Regulación hacia Abajo , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia/fisiopatología , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo
13.
Eur J Cell Biol ; 99(6): 151096, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32800275

RESUMEN

GPC3 is a proteoglycan involved in the control of proliferation and survival, which has been linked to several tumor types. In this respect, we previously demonstrated that normal breast tissues exhibit high levels of GPC3, while its expression is diminished in tumors. However, the role of the GPC3 downregulation in breast cancer progression and its molecular and cellular operational machineries are not fully understood. In this study we showed that GPC3 reverts the epithelial-to-mesenchymal transition (EMT) underwent by mammary tumor cells, blocks metastatic spread and induces dormancy at secondary site. Using genetically modified murine breast cancer cell sublines, we demonstrated that the phospho-Erk/phospho-p38 ratio is lower in GPC3 reexpressing cells, while p21, p27 and SOX2 levels are higher, suggesting a dormant phenotype. In vivo metastasis assays confirmed that GPC3 reexpressing cells reduce their metastatic ability. Interestingly, the presence of dormant cells was evidenced in the lungs of inoculated mice. Dormant cells could reactivate their proliferative capacity, remain viable as well as tumorigenic, but they reentered in dormancy upon reaching secondary site. We also proved that GPC3 inhibits metastasis through p38 pathway activation. The in vivo inhibition of p38 induced an increase in cell invasion of GPC3 reexpressing orthotropic tumors as well as in spontaneous and experimental metastatic dissemination. In conclusion, our study shows that GPC3 returns mesenchymal-like breast cancer cells to an epithelial phenotype, impairs in vivo metastasis and induces tumor dormancy through p38 MAPK signaling activation. These results help to identify genetic determinants of dormancy and suggest the translational potential of research focusing in GPC3.


Asunto(s)
Neoplasias de la Mama/genética , Glipicanos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Transducción de Señal
14.
J Cancer Res Clin Oncol ; 146(12): 3241-3253, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32865619

RESUMEN

PURPOSE: Retinoids have proved to be effective for hematologic malignancies treatment but till nowadays, their use as single agent for the solid tumor's management is still controversial. All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, exerts non-genomic interactions with different members of the protein kinase C (PKC) family, recognized modulators of different tumor progression pathways. To determine whether a group of patients could become benefited employing a retinoid therapy, in this study we have evaluated whether PKCα expression (a poor prognosis marker in breast cancer) could sensitizes mammary cells to ATRA treatment. METHODS: PKCα overexpression was achieved by stable transfection and confirmed by western blot. Transfected PKC functionality was determined by nuclear translocation-induction and confocal microscopy. In vitro proliferation was evaluated by cell counting and cell cycle distribution was analyzed by flow cytometry. In vivo studies were performed to evaluate orthotopic tumor growth and experimental lung colonization. Retinoic acid response elements (RARE) and AP1 sites-dependent activity was studied by gene reporter assays and retinoic acid receptors (RARs) were measured by RT-qPCR. RESULTS: Our findings suggest that high PKCα levels improve the differentiation response to ATRA in a RAR signaling-dependent manner. Moreover, RARß expression appears to be critical to induce ATRA sensitization, throughout AP1 trans-repression. CONCLUSION: Here we propose that retinoids could lead a highly personalized anticancer treatment, bringing benefits to patients with aggressive breast tumors resulting from high PKCα expression but, an adequate expression of the RARß receptor is required to ensure the effect on this process.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proteína Quinasa C-alfa/genética , Receptores de Ácido Retinoico/genética , Tretinoina/farmacología , Animales , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Diferenciación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Retinoides/farmacología , Transducción de Señal/efectos de los fármacos , Vitamina A/genética
15.
Breast Cancer Res Treat ; 118(3): 469-80, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19132529

RESUMEN

In this paper we investigated whether protein kinase C (PKC) beta1 and PKCepsilon, members of the classical and novel PKC family, respectively, induce phenotypic alterations that could be associated with tumor progression and metastatic dissemination in a murine model of breast cancer. Stable overexpression of PKCbeta1 in LM3 cells altered their ability to proliferate, adhere, and survive, and impaired their tumorigenicity and metastatic capacity. Moreover, PKCbeta1 induced the re-expression of fibronectin, an extracellular matrix glycoprotein which loss has been associated with the acquisition of a transformed phenotype in different cell models, and exerted an important inhibition on proteases production, effects that probably impact on LM3 invasiveness and dissemination. Conversely, PKCepsilon overexpression enhanced LM3 survival, anchorage-independent growth, and caused a significant increase in spontaneous lung metastasis. Our results suggest PKCbeta1 functions as an inhibitory protein for tumor growth and metastasis dissemination whereas PKCepsilon drives metastatic dissemination without affecting primary tumor growth.


Asunto(s)
Neoplasias Mamarias Experimentales/enzimología , Invasividad Neoplásica/patología , Proteína Quinasa C-epsilon/metabolismo , Proteína Quinasa C/metabolismo , Animales , Western Blotting , Adhesión Celular/fisiología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica/genética , Proteína Quinasa C/genética , Proteína Quinasa C beta , Proteína Quinasa C-epsilon/genética , Transfección
16.
Mol Endocrinol ; 21(6): 1335-58, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17440047

RESUMEN

Accumulating evidence indicates that progestins are involved in controlling mammary gland tumorigenesis. Here, we assessed the molecular mechanisms of progestin action in breast cancer models with different phenotypes. We examined C4HD cells, an estrogen (ER) and progesterone (PR) receptor-positive murine breast cancer model in which progestins exert sustained proliferative response, the LM3 murine metastatic mammary tumor cell line, which lacks PR and ER expression, and human PR null T47D-Y breast cancer cells. In addition to acting as a transcription factor, PR can also function as an activator of signaling pathways. To explore which of these two functions were involved in progestin responses, reconstitution experiments in the PR-negative models were performed with wild-type PR-B, with a DNA binding mutant C587A-PR, and with mutant PR-BmPro, which lacks the ability to activate cytoplasm signaling pathways. We found that in a cell context either ER-positive or -negative, progestins induced cell growth and modulation of matrix metalloproteinases-9 (MMP-9) and -2 (MMP-2), and urokinase-type plasminogen activator (uPA) activities, via MAPK and phosphatidylinositol 3-kinase/Akt pathways, in cells expressing wild-type PR-B or DNA binding mutant C587A-PR. In contrast, in cells expressing mutant PR-BmPro, progestins did not induce growth. We also found that unliganded PR expression conferred breast cancer cells an in vitro less proliferative phenotype, as compared with cells lacking PR expression. Modulation of this behavior occurred when PR was functioning either as transcription factor or as signaling activator. Finally, we for the first time demonstrated that progestins favor development of breast tumor metastasis via PR function as activator of signaling pathways. Our present findings provide mechanistic support to the design of a novel therapeutic intervention in PR-positive breast tumors involving blockage of PR capacity to activate cytoplasmic signaling.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Péptido Hidrolasas/metabolismo , Progestinas/farmacología , Receptores de Progesterona/metabolismo , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citoplasma/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptores de Progesterona/genética , Transducción de Señal , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
17.
EXCLI J ; 17: 1030-1042, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30585274

RESUMEN

RAC3 is a coactivator of steroid receptors and NF-κB. It is usually overexpressed in several tumors, contributes to maintain cancer stem cells and also to induce them when is overexpressed in non-tumoral cells. In this work, we investigated whether the inflammatory cytokine TNF may contribute to the transforming effects of RAC3 overexpression in the non-tumoral HEK293 cell line. The study model included the HEK293 tumoral transformed cell line constitutively overexpressing RAC3 by stable transfection and control non-tumoral cells transfected with an empty vector. The HeLa and T47D tumoral cells that naturally overexpress RAC3 were used as positive control. We found that TNF potentiated RAC3-induced mesenchymal transition, involving an increased E-Cadherin downregulation, Vimentin and SNAIL upregulation and enhanced migratory behavior. Moreover, concerning the molecular mechanisms by which TNF potentiates the RAC3 transforming action, they involve the IKK activation, which in addition induced the ß-Catenin transactivation. Our results demonstrate that although RAC3 overexpression could be a signal strong enough to induce cancer stem cells, the inflammatory microenvironment may be playing a key role contributing to the migratory and invasive phenotype required for metastasis and cancer persistence.

18.
Oncotarget ; 9(5): 5848-5860, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29464039

RESUMEN

RAC3 is a transcription coactivator, usually overexpressed in several tumors and required to maintain the pluripotency in normal stem cells. In this work we studied the association between RAC3 overexpression on cancer cell stemness and the capacity of this protein to induce cancer stem properties in non tumoral cells. We performed in vitro and in vivo experiments using two strategies: by overexpressing RAC3 in the non tumoral cell line HEK293 and by silencing RAC3 in the human colorectal epithelial cell line HCT116 by transfection. Furthermore, we analysed public repository microarrays data from human colorectal tumors in different developmental stages. We found that RAC3 overexpression was mainly associated to CD133+ side-population of colon cancer cells and also to early and advanced stages of colon cancer, involving increased expression of mesenchymal and stem markers. In turn, RAC3 silencing induced diminished tumoral properties and cancer stem cells as determined by Hoechst efflux, tumorspheres and clonogenic growth, which correlated with decreased Nanog and OCT4 expression. In non tumoral cells, RAC3 overexpression induced tumoral transformation; mesenchymal phenotype and stem markers expression. Moreover, these transformed cells generated tumors in vivo. Our results demonstrate that RAC3 is required for maintaining and induction of cancer cell stemness.

19.
Clin Exp Metastasis ; 24(7): 513-20, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17653823

RESUMEN

In previous studies we have determined that protein kinase C (PKC) delta, a widely expressed member of the novel PKC serine-threonine kinases, induces in vitro changes associated with the acquisition of a malignant phenotype in NMuMG murine mammary cells. In this study we show that PKCdelta overexpression significantly decreases urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) production, two proteases associated with migratory and invasive capacities. This effect is markedly enhanced by treatment with phorbol 12-myristate 13-acetate (PMA). On the other hand, depletion of PKCdelta using RNAi led to a marked increase in both uPA and MMP-9 secretion, suggesting a physiological role for PKCdelta in controlling protease secretion. The MEK-1 inhibitor PD98059 reverted the characteristic pattern of proteases secretion and phospho-ERK1/2 up-regulation observed in PKCdelta overexpressors, suggesting that the PKCdelta effect is mediated by the MEK/ERK pathway. Our results suggest a dual role for PKCdelta in murine mammary cell cancer progression. While this kinase clearly promotes mitogenesis and favors malignant transformation, it also down-modulates the secretion of proteases probably limiting metastatic dissemination.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Glándulas Mamarias Animales/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteína Quinasa C-delta/fisiología , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Línea Celular , Movimiento Celular , Transformación Celular Neoplásica , Regulación hacia Abajo , Flavonoides/farmacología , Ratones , Péptido Hidrolasas/metabolismo , Transfección
20.
Lung Cancer ; 107: 14-21, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27319334

RESUMEN

OBJECTIVES: Casein kinase 2 (CK2) is overexpressed in several types of cancer. It has more than 300 substrates mainly involved in DNA reparation and replication, chromatin remodeling and cellular growth. In recent years CK2 became an interesting target for anticancer drug development. CIGB-300 is a peptidic inhibitor of CK2 activity, designed to bind to the phospho-acceptor domain of CK2 substrates, impairing the correct phosphorylation by the enzyme. The aim of this work was to explore the antitumor effects of this inhibitor in preclinical lung cancer models. MATERIALS AND METHODS: Human H125 and murine 3LL Lewis lung carcinoma cell lines were used to evaluate the effect of CIGB-300 treatment in vitro. For this purpose, adhesion, migration and invasion capabilities of cancer cells were tested. Proteolytic activity of tumor cell-secreted uPA and MMP after CIGB-300 incubation was also analyzed. In vivo anticancer efficacy of the peptide was evaluated using experimental and spontaneous lung colonization assays in C57BL/6 mice. Finally, in order to test the effect of CIGB-300 on tumor cell-induced angiogenesis, a modified Matrigel plug assay was conducted. RESULTS AND CONCLUSION: We demonstrate that treatment with low micromolar concentrations of CIGB-300 caused a drastic reduction of adhesion, migration and invasion of lung cancer cells. Reduced invasiveness after CIGB-300 incubation was associated with decreased proteolytic activity of tumor cell-conditioned medium. In vivo, intravenous administration of CIGB-300 (10mg/kg) markly decreased lung colonization and metastasis development of 3LL cells. Interestingly, after 5days of systemic treatment with CIGB-300, tumor cell-driven neovascularization was significantly reduced in comparison to control group. Altogether our data suggest an important role of CK2 in lung tumor development, suggesting a potential use of CIGB-300 as a novel therapeutic agent against lung cancer.


Asunto(s)
Quinasa de la Caseína II/antagonistas & inhibidores , Línea Celular Tumoral/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Metástasis de la Neoplasia/tratamiento farmacológico , Péptidos Cíclicos/farmacología , Administración Intravenosa , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Quinasa de la Caseína II/metabolismo , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/tratamiento farmacológico , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/metabolismo , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA