Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2401686121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838019

RESUMEN

S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.


Asunto(s)
Glicoproteínas de Membrana , Ácidos Teicoicos , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/química , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Lactobacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/genética
2.
PLoS Pathog ; 20(6): e1011883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838057

RESUMEN

ATP-binding cassette (ABC) transport systems are crucial for bacteria to ensure sufficient uptake of nutrients that are not produced de novo or improve the energy balance. The cell surface of the pathobiont Streptococcus pneumoniae (pneumococcus) is decorated with a substantial array of ABC transporters, critically influencing nasopharyngeal colonization and invasive infections. Given the auxotrophic nature of pneumococci for certain amino acids, the Ami ABC transporter system, orchestrating oligopeptide uptake, becomes indispensable in host compartments lacking amino acids. The system comprises five exposed Oligopeptide Binding Proteins (OBPs) and four proteins building the ABC transporter channel. Here, we present a structural analysis of all the OBPs in this system. Multiple crystallographic structures, capturing both open and closed conformations along with complexes involving chemically synthesized peptides, have been solved at high resolution providing insights into the molecular basis of their diverse peptide specificities. Mass spectrometry analysis of oligopeptides demonstrates the unexpected remarkable promiscuity of some of these proteins when expressed in Escherichia coli, displaying affinity for a wide range of peptides. Finally, a model is proposed for the complete Ami transport system in complex with its various OBPs. We further disclosed, through in silico modelling, some essential structural changes facilitating oligopeptide transport into the cellular cytoplasm. Thus, the structural analysis of the Ami system provides valuable insights into the mechanism and specificity of oligopeptide binding by the different OBPs, shedding light on the intricacies of the uptake mechanism and the in vivo implications for this human pathogen.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas Bacterianas , Oligopéptidos , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Oligopéptidos/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Cristalografía por Rayos X , Modelos Moleculares , Lipoproteínas
3.
Nucleic Acids Res ; 50(9): e50, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35104880

RESUMEN

Proteins isolated from natural sources can be composed of a mixture of isoforms with similar physicochemical properties that coexist in the final steps of purification. Yet, even where unverified, the assumed sequence is enforced throughout the structural studies. Herein, we propose a novel perspective to address the usually neglected sequence heterogeneity of natural products by integrating biophysical, genetic and structural data in our program SEQUENCE SLIDER. The aim is to assess the evidence supporting chemical composition in structure determination. Locally, we interrogate the experimental map to establish which side chains are supported by the structural data, and the genetic information relating sequence conservation is integrated into this statistic. Hence, we build a constrained peptide database, containing most probable sequences to interpret mass spectrometry data (MS). In parallel, we perform MS de novo sequencing with genomic-based algorithms to detect point mutations. We calibrated SLIDER with Gallus gallus lysozyme, whose sequence is unequivocally established and numerous natural isoforms are reported. We used SLIDER to characterize a metalloproteinase and a phospholipase A2-like protein from the venom of Bothrops moojeni and a crotoxin from Crotalus durissus collilineatus. This integrated approach offers a more realistic structural descriptor to characterize macromolecules isolated from natural sources.


Asunto(s)
Mezclas Complejas/química , Isoformas de Proteínas/análisis , Programas Informáticos , Animales , Venenos de Crotálidos/química , Venenos de Crotálidos/genética , Crotalus/genética , Crotoxina/química , Crotoxina/genética , Fosfolipasas A2/química
4.
Nucleic Acids Res ; 50(21): 12558-12577, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36464236

RESUMEN

The PglZ family of proteins belongs to the alkaline phosphatase superfamily, which consists of metallohydrolases with limited sequence identity but similar metal-coordination architectures in otherwise divergent active sites. Proteins with a well-defined PglZ domain are ubiquitous among prokaryotes as essential components of BREX phage defence systems and two-component systems (TCSs). Whereas other members of the alkaline phosphatase superfamily are well characterized, the activity, structure and biological function of PglZ family proteins remain unclear. We therefore investigated the structure and function of PorX, an orphan response regulator of the Porphyromonas gingivalis TCS containing a putative PglZ effector domain. The crystal structure of PorX revealed a canonical receiver domain, a helical bundle, and an unprecedented PglZ domain, similar to the general organization of the phylogenetically related BREX-PglZ proteins. The PglZ domain of PorX features an active site cleft suitable for large substrates. An extensive search for substrates revealed that PorX is a phosphodiesterase that acts on cyclic and linear oligonucleotides, including signalling molecules such as cyclic oligoadenylates. These results, combined with mutagenesis, biophysical and enzymatic analysis, suggest that PorX coordinates oligonucleotide signalling pathways and indirectly regulates gene expression to control the secretion of virulence factors.


Asunto(s)
Proteínas Bacterianas , Factores de Virulencia , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Oligonucleótidos , Fosfatasa Alcalina , Expresión Génica
5.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431675

RESUMEN

Antimicrobial activity is being increasingly linked to amyloid fibril formation, suggesting physiological roles for some human amyloids, which have historically been viewed as strictly pathological agents. This work reports on formation of functional cross-α amyloid fibrils of the amphibian antimicrobial peptide uperin 3.5 at atomic resolution, an architecture initially discovered in the bacterial PSMα3 cytotoxin. The fibrils of uperin 3.5 and PSMα3 comprised antiparallel and parallel helical sheets, respectively, recapitulating properties of ß-sheets. Uperin 3.5 demonstrated chameleon properties of a secondary structure switch, forming mostly cross-ß fibrils in the absence of lipids. Uperin 3.5 helical fibril formation was largely induced by, and formed on, bacterial cells or membrane mimetics, and led to membrane damage and cell death. These findings suggest a regulation mechanism, which includes storage of inactive peptides as well as environmentally induced activation of uperin 3.5, via chameleon cross-α/ß amyloid fibrils.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/farmacología , Animales , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/química , Sitios de Unión , Cristalografía por Rayos X , Citotoxinas/química , Citotoxinas/metabolismo , Cinética , Lagartos/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus hominis/efectos de los fármacos , Homología Estructural de Proteína
6.
J Virol ; 95(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33239452

RESUMEN

The Birnavirus multifunctional protein VP3 plays an essential role coordinating the virus life cycle, interacting with the capsid protein VP2, with the RNA-dependent RNA polymerase VP1 and with the dsRNA genome. Furthermore, the role of this protein in controlling host cell responses triggered by dsRNA and preventing gene silencing has been recently demonstrated. Here we report the X-ray structure and dsRNA-binding activity of the N-terminal domain of Drosophila X virus (DXV) VP3. The domain folds in a bundle of three α-helices and arranges as a dimer, exposing to the surface a well-defined cluster of basic residues. Site directed mutagenesis combined with Electrophoretic Mobility Shift Assays (EMSA) and Surface Plasmon Resonance (SPR) revealed that this cluster, as well as a flexible and positively charged region linking the first and second globular domains of DXV VP3, are essential for dsRNA-binding. Also, RNA silencing studies performed in insect cell cultures confirmed the crucial role of this VP3 domain for the silencing suppression activity of the protein.IMPORTANCE The Birnavirus moonlighting protein VP3 plays crucial roles interacting with the dsRNA genome segments to form stable ribonucleoprotein complexes and controlling host cell immune responses, presumably by binding to and shielding the dsRNA from recognition by the host silencing machinery. The structural, biophysical and functional data presented in this work has identified the N-terminal domain of VP3 as responsible for the dsRNA-binding and silencing suppression activities of the protein in Drosophila X virus.

7.
PLoS Pathog ; 15(4): e1007656, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951555

RESUMEN

Zika virus (ZIKV), a member of the Flaviviridae family, has emerged as a major public health threat, since ZIKV infection has been connected to microcephaly and other neurological disorders. Flavivirus genome replication is driven by NS5, an RNA-dependent RNA polymerase (RdRP) that also contains a N-terminal methyltransferase domain essential for viral mRNA capping. Given its crucial roles, ZIKV NS5 has become an attractive antiviral target. Here, we have used integrated structural biology approaches to characterize the supramolecular arrangement of the full-length ZIKV NS5, highlighting the assembly and interfaces between NS5 monomers within a dimeric structure, as well as the dimer-dimer interactions to form higher order fibril-like structures. The relative orientation of each monomer within the dimer provides a model to explain the coordination between MTase and RdRP domains across neighboring NS5 molecules and mutational studies underscore the crucial role of the MTase residues Y25, K28 and K29 in NS5 dimerization. The basic residue K28 also participates in GTP binding and competition experiments indicate that NS5 dimerization is disrupted at high GTP concentrations. This competition represents a first glimpse at a molecular level explaining how dimerization might regulate the capping process.


Asunto(s)
Conformación Proteica , Multimerización de Proteína , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Virus Zika/enzimología , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(17): 4393-4398, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632171

RESUMEN

ß-Lactam antibiotics inhibit cell-wall transpeptidases, preventing the peptidoglycan, the major constituent of the bacterial cell wall, from cross-linking. This causes accumulation of long non-cross-linked strands of peptidoglycan, which leads to bacterial death. Pseudomonas aeruginosa, a nefarious bacterial pathogen, attempts to repair this aberrantly formed peptidoglycan by the function of the lytic transglycosylase Slt. We document in this report that Slt turns over the peptidoglycan by both exolytic and endolytic reactions, which cause glycosidic bond scission from a terminus or in the middle of the peptidoglycan, respectively. These reactions were characterized with complex synthetic peptidoglycan fragments that ranged in size from tetrasaccharides to octasaccharides. The X-ray structure of the wild-type apo Slt revealed it to be a doughnut-shaped protein. In a series of six additional X-ray crystal structures, we provide insights with authentic substrates into how Slt is enabled for catalysis for both the endolytic and exolytic reactions. The substrate for the exolytic reaction binds Slt in a canonical arrangement and reveals how both the glycan chain and the peptide stems are recognized by the Slt. We document that the apo enzyme does not have a fully formed active site for the endolytic reaction. However, binding of the peptidoglycan at the existing subsites within the catalytic domain causes a conformational change in the protein that assembles the surface for binding of a more expansive peptidoglycan between the catalytic domain and an adjacent domain. The complexes of Slt with synthetic peptidoglycan substrates provide an unprecedented snapshot of the endolytic reaction.


Asunto(s)
Proteínas Bacterianas/química , Glicósido Hidrolasas/química , Peptidoglicano/química , Pseudomonas aeruginosa/enzimología , Cristalografía por Rayos X , Dominios Proteicos , Relación Estructura-Actividad
9.
Angew Chem Int Ed Engl ; 60(43): 23212-23216, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34415670

RESUMEN

Recently described rhizolutin and collinolactone isolated from Streptomyces Gö 40/10 share the same novel carbon scaffold. Analyses by NMR and X-Ray crystallography verify the structure of collinolactone and propose a revision of rhizolutin's stereochemistry. Isotope-labeled precursor feeding shows that collinolactone is biosynthesized via type I polyketide synthase with Baeyer-Villiger oxidation. CRISPR-based genetic strategies led to the identification of the biosynthetic gene cluster and a high-production strain. Chemical semisyntheses yielded collinolactone analogues with inhibitory effects on L929 cell line. Fluorescence microscopy revealed that only particular analogues induce monopolar spindles impairing cell division in mitosis. Inspired by the Alzheimer-protective activity of rhizolutin, we investigated the neuroprotective effects of collinolactone and its analogues on glutamate-sensitive cells (HT22) and indeed, natural collinolactone displays distinct neuroprotection from intracellular oxidative stress.


Asunto(s)
Diterpenos/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Línea Celular , Diterpenos/química , Diterpenos/metabolismo , Ratones , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Potoroidae , Huso Acromático/efectos de los fármacos
10.
J Biol Chem ; 294(37): 13833-13849, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31416836

RESUMEN

Aspergillus fumigatus is an opportunistic fungal pathogen that causes both chronic and acute invasive infections. Galactosaminogalactan (GAG) is an integral component of the A. fumigatus biofilm matrix and a key virulence factor. GAG is a heterogeneous linear α-1,4-linked exopolysaccharide of galactose and GalNAc that is partially deacetylated after secretion. A cluster of five co-expressed genes has been linked to GAG biosynthesis and modification. One gene in this cluster, ega3, is annotated as encoding a putative α-1,4-galactosaminidase belonging to glycoside hydrolase family 114 (GH114). Herein, we show that recombinant Ega3 is an active glycoside hydrolase that disrupts GAG-dependent A. fumigatus and Pel polysaccharide-dependent Pseudomonas aeruginosa biofilms at nanomolar concentrations. Using MS and functional assays, we demonstrate that Ega3 is an endo-acting α-1,4-galactosaminidase whose activity depends on the conserved acidic residues, Asp-189 and Glu-247. X-ray crystallographic structural analysis of the apo Ega3 and an Ega3-galactosamine complex, at 1.76 and 2.09 Å resolutions, revealed a modified (ß/α)8-fold with a deep electronegative cleft, which upon ligand binding is capped to form a tunnel. Our structural analysis coupled with in silico docking studies also uncovered the molecular determinants for galactosamine specificity and substrate binding at the -2 to +1 binding subsites. The findings in this study increase the structural and mechanistic understanding of the GH114 family, which has >600 members encoded by plant and opportunistic human pathogens, as well as in industrially used bacteria and fungi.


Asunto(s)
Aspergillus fumigatus/metabolismo , Glicósido Hidrolasas/genética , Hexosaminidasas/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/ultraestructura , Biopelículas/efectos de los fármacos , Cristalografía por Rayos X/métodos , Proteínas Fúngicas/genética , Hongos/metabolismo , Glicósido Hidrolasas/metabolismo , Hexosaminidasas/farmacología , Hexosaminidasas/ultraestructura , Polisacáridos/metabolismo , Virulencia
11.
J Biol Chem ; 292(14): 5724-5735, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28196869

RESUMEN

Skewing of the human oral microbiome causes dysbiosis and preponderance of bacteria such as Porphyromonas gingivalis, the main etiological agent of periodontitis. P. gingivalis secretes proteolytic gingipains (Kgp and RgpA/B) as zymogens inhibited by a pro-domain that is removed during extracellular activation. Unraveling the molecular mechanism of Kgp zymogenicity is essential to design inhibitors blocking its activity. Here, we found that the isolated 209-residue Kgp pro-domain is a boomerang-shaped all-ß protein similar to the RgpB pro-domain. Using composite structural information of Kgp and RgpB, we derived a plausible homology model and mechanism of Kgp-regulating zymogenicity. Accordingly, the pro-domain would laterally attach to the catalytic moiety in Kgp and block the active site through an exposed inhibitory loop. This loop features a lysine (Lys129) likely occupying the S1 specificity pocket and exerting latency. Lys129 mutation to glutamate or arginine led to misfolded protein that was degraded in vivo Mutation to alanine gave milder effects but still strongly diminished proteolytic activity, without affecting the subcellular location of the enzyme. Accordingly, the interactions of Lys129 within the S1 pocket are also essential for correct folding. Uniquely for gingipains, the isolated Kgp pro-domain dimerized through an interface, which partially overlapped with that between the catalytic moiety and the pro-domain within the zymogen, i.e. both complexes are mutually exclusive. Thus, pro-domain dimerization, together with partial rearrangement of the active site upon activation, explains the lack of inhibition of the pro-domain in trans. Our results reveal that the specific latency mechanism of Kgp differs from those of Rgps.


Asunto(s)
Adhesinas Bacterianas/química , Cisteína Endopeptidasas/química , Precursores Enzimáticos/química , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/patogenicidad , Factores de Virulencia/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Infecciones por Bacteroidaceae/enzimología , Infecciones por Bacteroidaceae/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Cisteína-Endopeptidasas Gingipaínas , Gingivitis/enzimología , Gingivitis/genética , Humanos , Microbiota , Boca/microbiología , Porphyromonas gingivalis/genética , Dominios Proteicos , Multimerización de Proteína , Relación Estructura-Actividad , Factores de Virulencia/metabolismo
12.
PLoS Pathog ; 12(12): e1006079, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27973613

RESUMEN

Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all ß-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of ß-sheets. The A46(1-83) structure itself is a ß-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1-240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.


Asunto(s)
Virus Vaccinia/química , Virus Vaccinia/metabolismo , Proteínas Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Escherichia coli , Células HEK293 , Humanos , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica en Lámina beta , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño , Espectrometría de Masa por Ionización de Electrospray , Proteínas Virales/metabolismo
13.
J Biol Chem ; 291(37): 19502-16, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27474740

RESUMEN

The DUF156 family of DNA-binding transcriptional regulators includes metal sensors that respond to cobalt and/or nickel (RcnR, InrS) or copper (CsoR) plus CstR, which responds to persulfide, and formaldehyde-responsive FrmR. Unexpectedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by metals in vitro, and variant FrmR(E64H) gains responsiveness to Zn(II) and cobalt in vivo Here we establish that the allosteric mechanism of FrmR is triggered directly by formaldehyde in vitro Sensitivity to formaldehyde requires a cysteine (Cys(35) in FrmR) conserved in all DUF156 proteins. A crystal structure of metal- and formaldehyde-sensing FrmR(E64H) reveals that an FrmR-specific amino-terminal Pro(2) is proximal to Cys(35), and these residues form the deduced formaldehyde-sensing site. Evidence is presented that implies that residues spatially close to the conserved cysteine tune the sensitivities of DUF156 proteins above or below critical thresholds for different effectors, generating the semblance of specificity within cells. Relative to FrmR, RcnR is less responsive to formaldehyde in vitro, and RcnR does not sense formaldehyde in vivo, but reciprocal mutations FrmR(P2S) and RcnR(S2P), respectively, impair and enhance formaldehyde reactivity in vitro Formaldehyde detoxification by FrmA requires S-(hydroxymethyl)glutathione, yet glutathione inhibits formaldehyde detection by FrmR in vivo and in vitro Quantifying the number of FrmR molecules per cell and modeling formaldehyde modification as a function of [formaldehyde] demonstrates that FrmR reactivity is optimized such that FrmR is modified and frmRA is derepressed at lower [formaldehyde] than required to generate S-(hydroxymethyl)glutathione. Expression of FrmA is thereby coordinated with the accumulation of its substrate.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Formaldehído/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Metales/metabolismo , Salmonella typhimurium/metabolismo , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Formaldehído/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Salmonella typhimurium/química , Salmonella typhimurium/genética
14.
Angew Chem Int Ed Engl ; 56(19): 5304-5307, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28387004

RESUMEN

Intramolecular benzoin reactions catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I (BAL) are reported. The structure of the substrates envisaged for this reaction consists of two benzaldehyde derivatives linked by an alkyl chain. The structural requirements needed to achieve the intramolecular carbon-carbon bond reaction catalyzed by BAL were established. Thus, a linker consisting of a linear alkyl chain of three carbon atoms connected through ether-type bonds to the 2 and 2' positions of two benzaldehyde moieties, which could be substituted with either Cl, Br, or OCH3 at either the 3 and 3' or 5 and 5' positions, were suitable substrates for BAL. Reactions with 61-84 % yields of the intramolecular product and ee values between 64 and 98 %, were achieved.


Asunto(s)
Aldehído-Liasas/metabolismo , Benzoína/metabolismo , Pseudomonas fluorescens/enzimología , Benzoína/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular
15.
Nat Methods ; 10(11): 1099-101, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24037245

RESUMEN

We describe an algorithm for phasing protein crystal X-ray diffraction data that identifies, retrieves, refines and exploits general tertiary structural information from small fragments available in the Protein Data Bank. The algorithm successfully phased, through unspecific molecular replacement combined with density modification, all-helical, mixed alpha-beta, and all-beta protein structures. The method is available as a software implementation: Borges.


Asunto(s)
Cristalografía/métodos , Pliegue de Proteína , Estructura Terciaria de Proteína , Algoritmos , Bases de Datos de Proteínas , Modelos Moleculares
16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 9): 1921-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26327382

RESUMEN

ARCIMBOLDO solves the phase problem at resolutions of around 2 Šor better through massive combination of small fragments and density modification. For complex structures, this imposes a need for a powerful grid where calculations can be distributed, but for structures with up to 200 amino acids in the asymmetric unit a single workstation may suffice. The use and performance of the single-workstation implementation, ARCIMBOLDO_LITE, on a pool of test structures with 40-120 amino acids and resolutions between 0.54 and 2.2 Šis described. Inbuilt polyalanine helices and iron cofactors are used as search fragments. ARCIMBOLDO_BORGES can also run on a single workstation to solve structures in this test set using precomputed libraries of local folds. The results of this study have been incorporated into an automated, resolution- and hardware-dependent parameterization. ARCIMBOLDO has been thoroughly rewritten and three binaries are now available: ARCIMBOLDO_LITE, ARCIMBOLDO_SHREDDER and ARCIMBOLDO_BORGES. The programs and libraries can be downloaded from http://chango.ibmb.csic.es/ARCIMBOLDO_LITE.


Asunto(s)
Computadores , Sistemas de Administración de Bases de Datos , Proteínas/química , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Programas Informáticos
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 9): 1931-45, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26327383

RESUMEN

ARCIMBOLDO allows ab initio phasing of macromolecular structures below atomic resolution by exploiting the location of small model fragments combined with density modification in a multisolution frame. The model fragments can be either secondary-structure elements predicted from the sequence or tertiary-structure fragments. The latter can be derived from libraries of typical local folds or from related structures, such as a low-homology model that is unsuccessful in molecular replacement. In all ARCIMBOLDO applications, fragments are searched for sequentially. Correct partial solutions obtained after each fragment-search stage but lacking the necessary phasing power can, if combined, succeed. Here, an analysis is presented of the clustering of partial solutions in reciprocal space and of its application to a set of different cases. In practice, the task of combining model fragments from an ARCIMBOLDO run requires their referral to a common origin and is complicated by the presence of correct and incorrect solutions as well as by their not being independent. The F-weighted mean phase difference has been used as a figure of merit. Clustering perfect, non-overlapping fragments dismembered from test structures in polar and nonpolar space groups shows that density modification before determining the relative origin shift enhances its discrimination. In the case of nonpolar space groups, clustering of ARCIMBOLDO solutions from secondary-structure models is feasible. The use of partially overlapping search fragments provides a more favourable circumstance and was assessed on a test case. Applying the devised strategy, a previously unknown structure was solved from clustered correct partial solutions.


Asunto(s)
Sustancias Macromoleculares/química , Modelos Moleculares , Conformación Proteica
18.
Angew Chem Int Ed Engl ; 54(10): 3013-7, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25611820

RESUMEN

α,α-Disubstituted α-amino acids are central to biotechnological and biomedical chemical processes for their own sake and as substructures of biologically active molecules for diverse biomedical applications. Structurally, these compounds contain a quaternary stereocenter, which is particularly challenging for stereoselective synthesis. The pyridoxal-5'-phosphate (PLP)-dependent L-serine hydroxymethyltransferase from Streptococcus thermophilus (SHMT(Sth); EC 2.1.2.1) was engineered to achieve the stereoselective synthesis of a broad structural variety of α,α-dialkyl-α-amino acids. This was accomplished by the formation of quaternary stereocenters through aldol addition of the amino acids D-Ala and D-Ser to a wide acceptor scope catalyzed by the minimalist SHMT(Sth) Y55T variant overcoming the limitation of the native enzyme for Gly. The SHMT(Sth) Y55T variant tolerates aromatic and aliphatic aldehydes as well as hydroxy- and nitrogen-containing aldehydes as acceptors.


Asunto(s)
Aminoácidos/biosíntesis , Glicina Hidroximetiltransferasa/metabolismo , Ingeniería de Proteínas , Streptococcus thermophilus/enzimología , Glicina Hidroximetiltransferasa/química , Modelos Moleculares , Difracción de Rayos X
19.
J Biol Chem ; 288(29): 21267-21278, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23733184

RESUMEN

Methicillin resistance in Staphylococcus aureus is elicited by the MecI-MecR1-MecA axis encoded by the mec locus. Recently, MecR2 was also identified as a regulator of mec through binding of the methicillin repressor, MecI. Here we show that plasmid-encoded full-length MecR2 restores resistance in a sensitive S. aureus mecR2 deletion mutant of the resistant strain N315. The crystal structure of MecR2 reveals an N-terminal DNA-binding domain, an intermediate scaffold domain, and a C-terminal dimerization domain that contributes to oligomerization. The protein shows structural similarity to ROK (repressors, open reading frames, and kinases) family proteins, which bind DNA and/or sugar molecules. We found that functional cell-based assays of three point mutants affecting residues participating in sugar binding in ROK proteins had no effect on the resistance phenotype. By contrast, MecR2 bound short double-stranded DNA oligonucleotides nonspecifically, and a deletion mutant affecting the N-terminal DNA-binding domain showed a certain effect on activity, thus contributing to resistance less than the wild-type protein. Similarly, a deletion mutant, in which a flexible segment of intermediate scaffold domain had been replaced by four glycines, significantly reduced MecR2 function, thus indicating that this domain may likewise be required for activity. Taken together, these results provide the structural basis for the activity of a methicillin antirepressor, MecR2, which would sequester MecI away from its cognate promoter region and facilitate its degradation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Resistencia a la Meticilina , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Staphylococcus aureus/metabolismo , Sitios de Unión , Reactivos de Enlaces Cruzados/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Ligandos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Soluciones , Relación Estructura-Actividad
20.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1743-57, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24914984

RESUMEN

Protein-DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein-DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein-DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein-DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.


Asunto(s)
Proteínas de Unión al ADN/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA