Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Am J Respir Crit Care Med ; 207(8): 1042-1054, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36480964

RESUMEN

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is linked to heterozygous mutations in the FOXF1 (Forkhead Box F1) gene, a key transcriptional regulator of pulmonary vascular development. There are no effective treatments for ACDMPV other than lung transplant, and new pharmacological agents activating FOXF1 signaling are urgently needed. Objectives: Identify-small molecule compounds that stimulate FOXF1 signaling. Methods: We used mass spectrometry, immunoprecipitation, and the in vitro ubiquitination assay to identify TanFe (transcellular activator of nuclear FOXF1 expression), a small-molecule compound from the nitrile group, which stabilizes the FOXF1 protein in the cell. The efficacy of TanFe was tested in mouse models of ACDMPV and acute lung injury and in human vascular organoids derived from induced pluripotent stem cells of a patient with ACDMPV. Measurements and Main Results: We identified HECTD1 as an E3 ubiquitin ligase involved in ubiquitination and degradation of the FOXF1 protein. The TanFe compound disrupted FOXF1-HECTD1 protein-protein interactions and decreased ubiquitination of the FOXF1 protein in pulmonary endothelial cells in vitro. TanFe increased protein concentrations of FOXF1 and its target genes Flk1, Flt1, and Cdh5 in LPS-injured mouse lungs, decreasing endothelial permeability and inhibiting lung inflammation. Treatment of pregnant mice with TanFe increased FOXF1 protein concentrations in lungs of Foxf1+/- embryos, stimulated neonatal lung angiogenesis, and completely prevented the mortality of Foxf1+/- mice after birth. TanFe increased angiogenesis in human vascular organoids derived from induced pluripotent stem cells of a patient with ACDMPV with FOXF1 deletion. Conclusions: TanFe is a novel activator of FOXF1, providing a new therapeutic candidate for treatment of ACDMPV and other neonatal pulmonary vascular diseases.


Asunto(s)
Síndrome de Circulación Fetal Persistente , Recién Nacido , Humanos , Animales , Ratones , Síndrome de Circulación Fetal Persistente/genética , Células Endoteliales , Pulmón/metabolismo , Factores de Transcripción Forkhead/genética
2.
PLoS Genet ; 16(4): e1008692, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32271749

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic disease with high mortality and is refractory to treatment. Pulmonary macrophages can both promote and repress fibrosis, however molecular mechanisms regulating macrophage functions during fibrosis remain poorly understood. FOXM1 is a transcription factor and is not expressed in quiescent lungs. Herein, we show that FOXM1 is highly expressed in pulmonary macrophages within fibrotic lungs of IPF patients and mouse fibrotic lungs. Macrophage-specific deletion of Foxm1 in mice (myFoxm1-/-) exacerbated pulmonary fibrosis. Inactivation of FOXM1 in vivo and in vitro increased p38 MAPK signaling in macrophages and decreased DUSP1, a negative regulator of p38 MAPK pathway. FOXM1 directly activated Dusp1 promoter. Overexpression of DUSP1 in FOXM1-deficient macrophages prevented activation of p38 MAPK pathway. Adoptive transfer of wild-type monocytes to myFoxm1-/- mice alleviated bleomycin-induced fibrosis. Altogether, contrary to known pro-fibrotic activities in lung epithelium and fibroblasts, FOXM1 has anti-fibrotic function in macrophages by regulating p38 MAPK.


Asunto(s)
Proteína Forkhead Box M1/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Fibrosis Pulmonar/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Traslado Adoptivo/métodos , Animales , Células Cultivadas , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Proteína Forkhead Box M1/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Fibrosis Pulmonar/terapia
3.
Am J Respir Crit Care Med ; 203(4): 471-483, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32877203

RESUMEN

Rationale: The regeneration and replacement of lung cells or tissues from induced pluripotent stem cell- or embryonic stem cell-derived cells represent future therapies for life-threatening pulmonary disorders but are limited by technical challenges to produce highly differentiated cells able to maintain lung function. Functional lung tissue-containing airways, alveoli, vasculature, and stroma have never been produced via directed differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells. We sought to produce all tissue components of the lung from bronchi to alveoli by embryo complementation.Objectives: To determine whether ESCs are capable of generating lung tissue in Nkx2-1-/- mouse embryos with lung agenesis.Methods: Blastocyst complementation was used to produce chimeras from normal mouse ESCs and Nkx2-1-/- embryos, which lack pulmonary tissues. Nkx2-1-/- chimeras were examined using immunostaining, transmission electronic microscopy, fluorescence-activated cell sorter analysis, and single-cell RNA sequencing.Measurements and Main Results: Although peripheral pulmonary and thyroid tissues are entirely lacking in Nkx2-1 gene-deleted embryos, pulmonary and thyroid structures in Nkx2-1-/- chimeras were restored after ESC complementation. Respiratory epithelial cell lineages in restored lungs of Nkx2-1-/- chimeras were derived almost entirely from ESCs, whereas endothelial, immune, and stromal cells were mosaic. ESC-derived cells from multiple respiratory cell lineages were highly differentiated and indistinguishable from endogenous cells based on morphology, ultrastructure, gene expression signatures, and cell surface proteins used to identify cell types by fluorescence-activated cell sorter.Conclusions: Lung and thyroid tissues were generated in vivo from ESCs by blastocyst complementation. Nkx2-1-/- chimeras can be used as "bioreactors" for in vivo differentiation and functional studies of ESC-derived progenitor cells.


Asunto(s)
Blastocisto/fisiología , Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Enfermedades Pulmonares/terapia , Pulmón/crecimiento & desarrollo , Glándula Tiroides/crecimiento & desarrollo , Ingeniería de Tejidos/métodos , Animales , Diferenciación Celular/genética , Humanos , Ratones , Modelos Animales
4.
Dev Dyn ; 250(7): 1001-1020, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33428297

RESUMEN

BACKGROUND: Distinct boundaries between the proximal conducting airways and more peripheral-bronchial regions of the lung are established early in foregut embryogenesis, demarcated in part by the distribution of SOX family and NKX2-1 transcription factors along the cephalo-caudal axis of the lung. We used blastocyst complementation to identify the role of NKX2-1 in the formation of the proximal-peripheral boundary of the airways in mouse chimeric embryos. RESULTS: While Nkx2-1-/- mouse embryos form primordial tracheal cysts, peripheral pulmonary structures are entirely lacking in Nkx2-1-/- mice. Complementation of Nkx2-1-/- embryos with NKX2-1-sufficient embryonic stem cells (ESCs) enabled the formation of all tissue components of the peripheral lung but did not enhance ESC colonization of the most proximal regions of the airways. In chimeric mice, a precise boundary was formed between NKX2-1-deficient basal cells co-expressing SOX2 and SOX9 in large airways and ESC-derived NKX2-1+ SOX9+ epithelial cells of smaller airways. NKX2-1-sufficient ESCs were able to selectively complement peripheral, rather than most proximal regions of the airways. ESC complementation did not prevent ectopic expression of SOX9 but restored ß-catenin signaling in Nkx2-1-/- basal cells of large airways. CONCLUSIONS: NKX2-1 and ß-catenin function in an epithelial cell-autonomous manner to establish the proximal-peripheral boundary along developing airways.


Asunto(s)
Blastocisto/fisiología , Organogénesis/genética , Mucosa Respiratoria/embriología , Factor Nuclear Tiroideo 1/fisiología , Animales , Diferenciación Celular/genética , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Prueba de Complementación Genética , Pulmón/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/genética , Embarazo , Tráquea/embriología
5.
Am J Respir Crit Care Med ; 202(1): 100-111, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32240596

RESUMEN

Rationale: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.Objectives: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.Methods: Newborn mice were exposed to 75% O2 for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with Foxm1 or Foxf1 cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.Measurements and Main Results: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.Conclusions: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.


Asunto(s)
Inductores de la Angiogénesis/administración & dosificación , Sistemas de Liberación de Medicamentos , Proteína Forkhead Box M1/administración & dosificación , Factores de Transcripción Forkhead/administración & dosificación , Hiperoxia/tratamiento farmacológico , Nanopartículas , Alveolos Pulmonares/efectos de los fármacos , Inductores de la Angiogénesis/farmacología , Inductores de la Angiogénesis/uso terapéutico , Animales , Animales Recién Nacidos , Western Blotting , Femenino , Citometría de Flujo , Proteína Forkhead Box M1/farmacología , Proteína Forkhead Box M1/uso terapéutico , Factores de Transcripción Forkhead/farmacología , Factores de Transcripción Forkhead/uso terapéutico , Hiperoxia/patología , Hiperoxia/fisiopatología , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/patología , Alveolos Pulmonares/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Resultado del Tratamiento
6.
Am J Respir Crit Care Med ; 200(9): 1164-1176, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31233341

RESUMEN

Rationale: Disruption of alveologenesis is associated with severe pediatric lung disorders, including bronchopulmonary dysplasia (BPD). Although c-KIT+ endothelial cell (EC) progenitors are abundant in embryonic and neonatal lungs, their role in alveolar septation and the therapeutic potential of these cells remain unknown.Objectives: To determine whether c-KIT+ EC progenitors stimulate alveologenesis in the neonatal lung.Methods: We used single-cell RNA sequencing of neonatal human and mouse lung tissues, immunostaining, and FACS analysis to identify transcriptional and signaling networks shared by human and mouse pulmonary c-KIT+ EC progenitors. A mouse model of perinatal hyperoxia-induced lung injury was used to identify molecular mechanisms that are critical for the survival, proliferation, and engraftment of c-KIT+ EC progenitors in the neonatal lung.Measurements and Main Results: Pulmonary c-KIT+ EC progenitors expressing PECAM-1, CD34, VE-Cadherin, FLK1, and TIE2 lacked mature arterial, venal, and lymphatic cell-surface markers. The transcriptomic signature of c-KIT+ ECs was conserved in mouse and human lungs and enriched in FOXF1-regulated transcriptional targets. Expression of FOXF1 and c-KIT was decreased in the lungs of infants with BPD. In the mouse, neonatal hyperoxia decreased the number of c-KIT+ EC progenitors. Haploinsufficiency or endothelial-specific deletion of Foxf1 in mice increased apoptosis and decreased proliferation of c-KIT+ ECs. Inactivation of either Foxf1 or c-Kit caused alveolar simplification. Adoptive transfer of c-KIT+ ECs into the neonatal circulation increased lung angiogenesis and prevented alveolar simplification in neonatal mice exposed to hyperoxia.Conclusions: Cell therapy involving c-KIT+ EC progenitors can be beneficial for the treatment of BPD.


Asunto(s)
Células Progenitoras Endoteliales/fisiología , Factores de Transcripción Forkhead/fisiología , Pulmón/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Recién Nacido , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Técnicas de Cultivo de Tejidos
7.
Am J Respir Crit Care Med ; 200(8): 1045-1056, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199666

RESUMEN

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital disorder causing respiratory failure and pulmonary hypertension shortly after birth. There are no effective treatments for ACDMPV other than lung transplant, and new therapeutic approaches are urgently needed. Although ACDMPV is linked to mutations in the FOXF1 gene, molecular mechanisms through which FOXF1 mutations cause ACDMPV are unknown.Objectives: To identify molecular mechanisms by which S52F FOXF1 mutations cause ACDMPV.Methods: We generated a clinically relevant mouse model of ACDMPV by introducing the S52F FOXF1 mutation into the mouse Foxf1 gene locus using CRISPR/Cas9 technology. Immunohistochemistry, whole-lung imaging, and biochemical methods were used to examine vasculature in Foxf1WT/S52F lungs and identify molecular mechanisms regulated by FOXF1.Measurements and Main Results: FOXF1 mutations were identified in 28 subjects with ACDMPV. Foxf1WT/S52F knock-in mice recapitulated histopathologic findings in ACDMPV infants. The S52F FOXF1 mutation disrupted STAT3-FOXF1 protein-protein interactions and inhibited transcription of Stat3, a critical transcriptional regulator of angiogenesis. STAT3 signaling and endothelial proliferation were reduced in Foxf1WT/S52F mice and human ACDMPV lungs. S52F FOXF1 mutant protein did not bind chromatin and was transcriptionally inactive. Furthermore, we have developed a novel formulation of highly efficient nanoparticles and demonstrated that nanoparticle delivery of STAT3 cDNA into the neonatal circulation restored endothelial proliferation and stimulated lung angiogenesis in Foxf1WT/S52F mice.Conclusions: FOXF1 acts through STAT3 to stimulate neonatal lung angiogenesis. Nanoparticle delivery of STAT3 is a promising strategy to treat ACDMPV associated with decreased STAT3 signaling.


Asunto(s)
Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Mutación , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/fisiopatología , Alveolos Pulmonares/anomalías , Transducción de Señal/genética , Animales , Humanos , Ratones , Modelos Animales , Alveolos Pulmonares/fisiopatología
8.
PLoS Genet ; 13(12): e1007097, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29267283

RESUMEN

Lung cancer remains one of the most prominent public health challenges, accounting for the highest incidence and mortality among all human cancers. While pulmonary invasive mucinous adenocarcinoma (PIMA) is one of the most aggressive types of non-small cell lung cancer, transcriptional drivers of PIMA remain poorly understood. In the present study, we found that Forkhead box M1 transcription factor (FOXM1) is highly expressed in human PIMAs and associated with increased extracellular mucin deposition and the loss of NKX2.1. To examine consequences of FOXM1 expression in tumor cells in vivo, we employed an inducible, transgenic mouse model to express an activated FOXM1 transcript in urethane-induced benign lung adenomas. FOXM1 accelerated tumor growth, induced progression from benign adenomas to invasive, metastatic adenocarcinomas, and induced SOX2, a marker of poorly differentiated tumor cells. Adenocarcinomas in FOXM1 transgenic mice expressed increased MUC5B and MUC5AC, and reduced NKX2.1, which are characteristics of mucinous adenocarcinomas. Expression of FOXM1 in KrasG12D transgenic mice increased the mucinous phenotype in KrasG12D-driven lung tumors. Anterior Gradient 2 (AGR2), an oncogene critical for intracellular processing and packaging of mucins, was increased in mouse and human PIMAs and was associated with FOXM1. FOXM1 directly bound to and transcriptionally activated human AGR2 gene promoter via the -257/-247 bp region. Finally, using orthotopic xenografts we demonstrated that inhibition of either FOXM1 or AGR2 in human PIMAs inhibited mucinous characteristics, and reduced tumor growth and invasion. Altogether, FOXM1 is necessary and sufficient to induce mucinous phenotypes in lung tumor cells in vivo.


Asunto(s)
Adenocarcinoma Mucinoso/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenoma/patología , Proteína Forkhead Box M1/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas/metabolismo , Células A549 , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/metabolismo , Adenoma/genética , Adenoma/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Proteína Forkhead Box M1/genética , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Mucoproteínas , Proteínas Oncogénicas , Regiones Promotoras Genéticas , Proteínas/genética
9.
Dev Biol ; 443(1): 50-63, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30153454

RESUMEN

Organogenesis is regulated by mesenchymal-epithelial signaling events that induce expression of cell-type specific transcription factors critical for cellular proliferation, differentiation and appropriate tissue patterning. While mesenchymal transcription factors play a key role in mesenchymal-epithelial interactions, transcriptional networks in septum transversum and splanchnic mesenchyme remain poorly characterized. Forkhead Box F1 (FOXF1) transcription factor is expressed in mesenchymal cell lineages; however, its role in organogenesis remains uncharacterized due to early embryonic lethality of Foxf1-/- mice. In the present study, we generated mesenchyme-specific Foxf1 knockout mice (Dermo1-Cre Foxf1-/-) and demonstrated that FOXF1 is required for development of respiratory, cardiovascular and gastrointestinal organ systems. Deletion of Foxf1 from mesenchyme caused embryonic lethality in the middle of gestation due to multiple developmental defects in the heart, lung, liver and esophagus. Deletion of Foxf1 inhibited mesenchyme proliferation and delayed branching lung morphogenesis. Gene expression profiling of micro-dissected distal lung mesenchyme and ChIP sequencing of fetal lung tissue identified multiple target genes activated by FOXF1, including Wnt2, Wnt11, Wnt5A and Hoxb7. FOXF1 decreased expression of the Wnt inhibitor Wif1 through direct transcriptional repression. Furthermore, using a global Foxf1 knockout mouse line (Foxf1-/-) we demonstrated that FOXF1-deficiency disrupts the formation of the lung bud in foregut tissue explants. Finally, deletion of Foxf1 from smooth muscle cell lineage (smMHC-Cre Foxf1-/-) caused hyper-extension of esophagus and trachea, loss of tracheal and esophageal muscle, mispatterning of esophageal epithelium and decreased proliferation of smooth muscle cells. Altogether, FOXF1 promotes lung morphogenesis by regulating mesenchymal-epithelial signaling and stimulating cellular proliferation in fetal lung mesenchyme.


Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Pulmón/embriología , Animales , Proliferación Celular , Factores de Transcripción Forkhead/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Pulmón/citología , Pulmón/metabolismo , Mesodermo/metabolismo , Ratones/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Transcriptoma/genética
10.
Gastroenterology ; 152(8): 2037-2051.e22, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28249813

RESUMEN

BACKGROUND & AIMS: Many different types of cancer cells have chromosome instability. The hippo pathway leads to phosphorylation of the transcriptional activator yes-associated protein 1 (YAP1, YAP), which regulates proliferation and has been associated with the development of liver cancer. We investigated the effects of hippo signaling via YAP on chromosome stability and hepatocarcinogenesis in humans and mice. METHODS: We analyzed transcriptome data from 242 patients with hepatocellular carcinoma (HCC) to search for gene signatures associated with chromosomal instability (CIN); we investigated associations with overall survival time and cancer recurrence using Kaplan-Meier curves. We analyzed changes in expression of these signature genes, at mRNA and protein levels, after small interfering RNA-mediated silencing of YAP in Sk-Hep1, SNU182, HepG2, or pancreatic cancer cells, as well as incubation with thiostrepton (an inhibitor of forkhead box M1 [FOXM1]) or verteporfin (inhibitor of the interaction between YAP and TEA domain transcription factor 4 [TEAD4]). We performed co-immunoprecipitation and chromatin immunoprecipitation experiments. We collected liver tissues from mice that express a constitutively active form of YAP (YAPS127A) and analyzed gene expression signatures and histomorphologic parameters associated with chromosomal instability. Mice were given injections of thiostrepton and livers were collected and analyzed by immunoblotting, immunohistochemistry, histology, and real-time polymerase chain reaction. We performed immunohistochemical analyses on tissue microarrays of 105 HCCs and 7 nontumor liver tissues. RESULTS: Gene expression patterns associated with chromosome instability, called CIN25 and CIN70, were detected in HCCs from patients with shorter survival time or early cancer recurrence. TEAD4 and YAP were required for CIN25 and CIN70 signature expression via induction and binding of FOXM1. Disrupting the interaction between YAP and TEAD4 with verteporfin, or inhibiting FOXM1 with thiostrepton, reduced the chromosome instability gene expression patterns. Hyperplastic livers and tumors from YAPS127A mice had increased CIN25 and CIN70 gene expression patterns, aneuploidy, and defects in mitosis. Injection of YAPS127A mice with thiostrepton reduced liver overgrowth and signs of chromosomal instability. In human HCC tissues, high levels of nuclear YAP correlated with increased chromosome instability gene expression patterns and aneuploidy. CONCLUSIONS: By analyzing cell lines, genetically modified mice, and HCC tissues, we found that YAP cooperates with FOXM1 to contribute to chromosome instability. Agents that disrupt this pathway might be developed as treatments for liver cancer. Transcriptome data are available in the Gene Expression Omnibus public database (accession numbers: GSE32597 and GSE73396).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma Hepatocelular/genética , Inestabilidad Cromosómica , Proteína Forkhead Box M1/genética , Neoplasias Hepáticas/genética , Fosfoproteínas/genética , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box M1/antagonistas & inhibidores , Proteína Forkhead Box M1/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Células Hep G2 , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Musculares/metabolismo , Fenotipo , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Porfirinas/farmacología , Pronóstico , Interferencia de ARN , Transducción de Señal , Factores de Transcripción de Dominio TEA , Tioestreptona/farmacología , Factores de Tiempo , Análisis de Matrices Tisulares , Factores de Transcripción/metabolismo , Transcriptoma , Transfección , Verteporfina , Proteínas Señalizadoras YAP
11.
EMBO J ; 32(2): 231-44, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23288041

RESUMEN

Alveolar epithelial cells (AECs) participate in the pathogenesis of pulmonary fibrosis, producing pro-inflammatory mediators and undergoing epithelial-to-mesenchymal transition (EMT). Herein, we demonstrated the critical role of Forkhead Box M1 (Foxm1) transcription factor in radiation-induced pulmonary fibrosis. Foxm1 was induced in AECs following lung irradiation. Transgenic expression of an activated Foxm1 transcript in AECs enhanced radiation-induced pneumonitis and pulmonary fibrosis, and increased the expression of IL-1ß, Ccl2, Cxcl5, Snail1, Zeb1, Zeb2 and Foxf1. Conditional deletion of Foxm1 from respiratory epithelial cells decreased radiation-induced pulmonary fibrosis and prevented the increase in EMT-associated gene expression. siRNA-mediated inhibition of Foxm1 prevented TGF-ß-induced EMT in vitro. Foxm1 bound to and increased promoter activity of the Snail1 gene, a critical transcriptional regulator of EMT. Expression of Snail1 restored TGF-ß-induced loss of E-cadherin in Foxm1-deficient cells in vitro. Lineage-tracing studies demonstrated that Foxm1 increased EMT during radiation-induced pulmonary fibrosis in vivo. Foxm1 is required for radiation-induced pulmonary fibrosis by enhancing the expression of genes critical for lung inflammation and EMT.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Factores de Transcripción Forkhead/fisiología , Fibrosis Pulmonar/genética , Animales , Células Cultivadas , Transición Epitelial-Mesenquimal/fisiología , Fibrosis/etiología , Fibrosis/genética , Fibrosis/metabolismo , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neumonía/genética , Neumonía/metabolismo , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , Traumatismos Experimentales por Radiación/genética , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología
12.
PLoS Genet ; 10(9): e1004656, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25254494

RESUMEN

SAM-pointed domain-containing ETS transcription factor (SPDEF) is expressed in normal prostate epithelium. While its expression changes during prostate carcinogenesis (PCa), the role of SPDEF in prostate cancer remains controversial due to the lack of genetic mouse models. In present study, we generated transgenic mice with the loss- or gain-of-function of SPDEF in prostate epithelium to demonstrate that SPDEF functions as tumor suppressor in prostate cancer. Loss of SPDEF increased cancer progression and tumor cell proliferation, whereas over-expression of SPDEF in prostate epithelium inhibited carcinogenesis and reduced tumor cell proliferation in vivo and in vitro. Transgenic over-expression of SPDEF inhibited mRNA and protein levels of Foxm1, a transcription factor critical for tumor cell proliferation, and reduced expression of Foxm1 target genes, including Cdc25b, Cyclin B1, Cyclin A2, Plk-1, AuroraB, CKS1 and Topo2alpha. Deletion of SPDEF in transgenic mice and cultures prostate tumor cells increased expression of Foxm1 and its target genes. Furthermore, an inverse correlation between SPDEF and Foxm1 levels was found in human prostate cancers. The two-gene signature of low SPDEF and high FoxM1 predicted poor survival in prostate cancer patients. Mechanistically, SPDEF bound to, and inhibited transcriptional activity of Foxm1 promoter by interfering with the ability of Foxm1 to activate its own promoter through auto-regulatory site located in the -745/-660 bp Foxm1 promoter region. Re-expression of Foxm1 restored cellular proliferation in the SPDEF-positive cancer cells and rescued progression of SPDEF-positive tumors in mouse prostates. Altogether, SPDEF inhibits prostate carcinogenesis by preventing Foxm1-regulated proliferation of prostate tumor cells. The present study identified novel crosstalk between SPDEF tumor suppressor and Foxm1 oncogene and demonstrated that this crosstalk is required for tumor cell proliferation during progression of prostate cancer in vivo.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Próstata/metabolismo , Próstata/patología , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proteína Forkhead Box M1 , Regulación Neoplásica de la Expresión Génica , Orden Génico , Marcación de Gen , Humanos , Masculino , Ratones , Ratones Noqueados , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología
13.
Dev Dyn ; 245(5): 590-604, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26869074

RESUMEN

BACKGROUND: Lung morphogenesis is regulated by interactions between the canonical Wnt/ß-catenin and Kras/ERK/Foxm1 signaling pathways that establish proximal-peripheral patterning of lung tubules. How these interactions influence the development of respiratory epithelial progenitors to acquire airway as compared to alveolar epithelial cell fate is unknown. During branching morphogenesis, SOX9 transcription factor is normally restricted from conducting airway epithelial cells and is highly expressed in peripheral, acinar progenitor cells that serve as precursors of alveolar type 2 (AT2) and AT1 cells as the lung matures. RESULTS: To identify signaling pathways that determine proximal-peripheral cell fate decisions, we used the SFTPC gene promoter to delete or overexpress key members of Wnt/ß-catenin and Kras/ERK/Foxm1 pathways in fetal respiratory epithelial progenitor cells. Activation of ß-catenin enhanced SOX9 expression in peripheral epithelial progenitors, whereas deletion of ß-catenin inhibited SOX9. Surprisingly, deletion of ß-catenin caused accumulation of atypical SOX9-positive basal cells in conducting airways. Inhibition of Wnt/ß-catenin signaling by Kras(G12D) or its downstream target Foxm1 stimulated SOX9 expression in basal cells. Genetic inactivation of Foxm1 from Kras(G12D) -expressing epithelial cells prevented the accumulation of SOX9-positive basal cells in developing airways. CONCLUSIONS: Interactions between the Wnt/ß-catenin and the Kras/ERK/Foxm1 pathways are essential to restrict SOX9 expression in basal cells. Developmental Dynamics 245:590-604, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteína Forkhead Box M1/metabolismo , Pulmón/embriología , Morfogénesis , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/fisiología , beta Catenina/metabolismo , Animales , Tipificación del Cuerpo , Embrión de Mamíferos , Células Epiteliales , Ratones , Factor de Transcripción SOX9/análisis , Células Madre
14.
J Biol Chem ; 290(12): 7563-75, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25631042

RESUMEN

Alterations in the forkhead box F2 gene expression have been reported in numerous pathologies, and Foxf2(-/-) mice are perinatal lethal with multiple malformations; however, molecular mechanisms pertaining to Foxf2 signaling are severely lacking. In this study, Foxf2 requirements in murine smooth muscle cells were examined using a conditional knock-out approach. We generated novel Foxf2-floxed mice, which we bred to smMHC-Cre-eGFP mice to generate a mouse line with Foxf2 deleted specifically from smooth muscle. These mice exhibited growth retardation due to reduced intestinal length as well as inflammation and remodeling of the small intestine. Colons of Tg(smMHC-Cre-eGFP(+/-));Foxf2(-/-) mice had expansion of the myenteric nerve plexus and increased proliferation of smooth muscle cells leading to thickening of the longitudinal smooth muscle layer. Foxf2 deficiency in colonic smooth muscle was associated with increased expression of Foxf1, PDGFa, PDGFb, PDGF receptor α, and myocardin. FOXF2 bound to promoter regions of these genes indicating direct transcriptional regulation. Foxf2 repressed Foxf1 promoter activity in co-transfection experiments. We also show that knockdown of Foxf2 in colonic smooth muscle cells in vitro and in transgenic mice increased myocardin/serum response factor signaling and increased expression of contractile proteins. Foxf2 attenuated myocardin/serum response factor signaling in smooth muscle cells through direct binding to the N-terminal region of myocardin. Our results indicate that Foxf2 signaling in smooth muscle cells is essential for intestinal development and serum response factor signaling.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Intestinos/embriología , Proteínas Nucleares/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Respuesta Sérica/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Animales , Secuencia de Bases , Inmunoprecipitación de Cromatina , Cartilla de ADN , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfogénesis , Músculo Liso/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Regiones Promotoras Genéticas
15.
Circ Res ; 115(8): 709-20, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25091710

RESUMEN

RATIONALE: Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. OBJECTIVE: Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. METHODS AND RESULTS: A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin ß3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. CONCLUSIONS: FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling.


Asunto(s)
Vasos Sanguíneos/metabolismo , Células Endoteliales/metabolismo , Factores de Transcripción Forkhead/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis/genética , Secuencia de Bases , Vasos Sanguíneos/embriología , Western Blotting , Línea Celular , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunohistoquímica , Pulmón/irrigación sanguínea , Pulmón/embriología , Pulmón/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico
16.
Am J Respir Cell Mol Biol ; 52(5): 611-21, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25275225

RESUMEN

Current treatments for inflammation associated with bronchopulmonary dysplasia (BPD) fail to show clinical efficacy. Foxm1, a transcription factor of the Forkhead box family, is a critical mediator of lung development and carcinogenesis, but its role in BPD-associated pulmonary inflammation is unknown. Immunohistochemistry and RNA analysis were used to assess Foxm1 in lung tissue from hyperoxia-treated mice and patients with BPD. LysM-Cre/Foxm1(-/-) mice, in which Foxm1 was deleted from myeloid-derived inflammatory cells, including macrophages, monocytes, and neutrophils, were exposed to neonatal hyperoxia, causing lung injury and remodeling. Measurements of lung function and flow cytometry were used to evaluate the effects of Foxm1 deletion on pulmonary inflammation and repair. Increased Foxm1 expression was observed in pulmonary macrophages of hyperoxia-exposed mice and in lung tissue from patients with BPD. After hyperoxia, deletion of Foxm1 from the myeloid cell lineage decreased numbers of interstitial macrophages (CD45(+)CD11b(+)Ly6C(-)Ly6G(-)F4/80(+)CD68(-)) and impaired alveologenesis and lung function. The exaggerated BPD-like phenotype observed in hyperoxia-exposed LysM-Cre/Foxm1(-/-) mice was associated with increased expression of neutrophil-derived myeloperoxidase, proteinase 3, and cathepsin g, all of which are critical for lung remodeling and inflammation. Our data demonstrate that Foxm1 influences pulmonary inflammatory responses to hyperoxia, inhibiting neutrophil-derived enzymes and enhancing monocytic responses that limit alveolar injury and remodeling in neonatal lungs.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Hiperoxia/complicaciones , Lesión Pulmonar/metabolismo , Pulmón/metabolismo , Neumonía/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Células Epiteliales Alveolares/metabolismo , Animales , Displasia Broncopulmonar/metabolismo , Estudios de Casos y Controles , Catepsina G/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/genética , Humanos , Hiperoxia/metabolismo , Hiperoxia/fisiopatología , Recién Nacido , Pulmón/patología , Pulmón/fisiopatología , Lesión Pulmonar/etiología , Lesión Pulmonar/patología , Lesión Pulmonar/fisiopatología , Macrófagos/metabolismo , Ratones Noqueados , Mieloblastina/metabolismo , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Neumonía/etiología , Neumonía/patología , Neumonía/fisiopatología
17.
J Biol Chem ; 288(40): 28477-87, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23946491

RESUMEN

Smooth muscle cells (SMCs) modulate their phenotype from a quiescent contractile state to a dedifferentiated, proliferative and migratory state during the pathogenesis of many diseases, including intestinal pseudoobstruction. Understanding how smooth muscle gene expression is regulated in these different phenotypic states is critical for unraveling the pathogenesis of these diseases. In the current study we examined the specific roles of Foxf1 in visceral SMC differentiation. Data show that Foxf1 is specifically required for expression of several contractile and regulatory proteins such as telokin, smooth muscle γ-actin, and Cav1.2b in visceral SMCs. Mechanistically, Foxf1 directly binds to and activates the telokin promoter. Foxf1 also directly binds to serum response factor (SRF) and myocardin-related transcription factors (MRTFs). Unlike Foxo4 and Foxq1, which bind to MRTFs and block their interaction with SRF, Foxf1 acts synergistically with these proteins to regulate telokin expression. Knock-out of Foxf1 specifically in SMCs results in neonatal lethality, with mice exhibiting GI tract abnormalities. Mice heterozygous for Foxf1 in SMC exhibited impaired colonic contractility and decreased expression of contractile proteins. These studies together with previous studies, suggest that different forkhead proteins can regulate gene expression in SMCs through modulating the activity of the SRF-myocardin axis to either promote or inhibit differentiation and proliferation thereby altering gastrointestinal contractility and development.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Factor de Respuesta Sérica/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Vísceras/citología , Secuencia Rica en At/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Colon/citología , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Contracción Muscular/genética , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/genética
18.
J Biol Chem ; 288(31): 22527-41, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23775078

RESUMEN

The treatment of advanced prostate cancer (PCa) remains a challenge. Identification of new molecular mechanisms that regulate PCa initiation and progression would provide targets for the development of new cancer treatments. The Foxm1 transcription factor is highly up-regulated in tumor cells, inflammatory cells, and cells of tumor microenvironment. However, its functions in different cell populations of PCa lesions are unknown. To determine the role of Foxm1 in tumor cells during PCa development, we generated two novel transgenic mouse models, one exhibiting Foxm1 gain-of-function and one exhibiting Foxm1 loss-of-function under control of the prostate epithelial-specific Probasin promoter. In the transgenic adenocarcinoma mouse prostate (TRAMP) model of PCa that uses SV40 large T antigen to induce PCa, loss of Foxm1 decreased tumor growth and metastasis. Decreased prostate tumorigenesis was associated with a decrease in tumor cell proliferation and the down-regulation of genes critical for cell proliferation and tumor metastasis, including Cdc25b, Cyclin B1, Plk-1, Lox, and Versican. In addition, tumor-associated angiogenesis was decreased, coinciding with reduced Vegf-A expression. The mRNA and protein levels of 11ß-Hsd2, an enzyme playing an important role in tumor cell proliferation, were down-regulated in Foxm1-deficient PCa tumors in vivo and in Foxm1-depleted TRAMP C2 cells in vitro. Foxm1 bound to, and increased transcriptional activity of, the mouse 11ß-Hsd2 promoter through the -892/-879 region, indicating that 11ß-Hsd2 was a direct transcriptional target of Foxm1. Without TRAMP, overexpression of Foxm1 either alone or in combination with inhibition of a p19(ARF) tumor suppressor caused a robust epithelial hyperplasia, but was insufficient to induce progression from hyperplasia to PCa. Foxm1 expression in prostate epithelial cells is critical for prostate carcinogenesis, suggesting that inhibition of Foxm1 is a promising therapeutic approach for prostate cancer chemotherapy.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Secuencia de Bases , Transformación Celular Neoplásica , Cartilla de ADN , Células Epiteliales/metabolismo , Proteína Forkhead Box M1 , Humanos , Masculino , Próstata/citología , Neoplasias de la Próstata/patología , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Dev Biol ; 370(2): 198-212, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22885335

RESUMEN

Respiratory epithelial cells are derived from cell progenitors in the foregut endoderm that subsequently differentiate into the distinct cell types lining the conducting and alveolar regions of the lung. To identify transcriptional mechanisms regulating differentiation and maintenance of respiratory epithelial cells, we conditionally deleted Foxm1 transcription factor from the conducting airways of the developing mouse lung. Conditional deletion of Foxm1 from Clara cells, controlled by the Scgb1a1 promoter, dramatically altered airway structure and caused peribronchial fibrosis, resulting in airway hyperreactivity in adult mice. Deletion of Foxm1 inhibited proliferation of Clara cells and disrupted the normal patterning of epithelial cell differentiation in the bronchioles, causing squamous and goblet cell metaplasia, and the loss of Clara and ciliated cells. Surprisingly, conducting airways of Foxm1-deficient mice contained highly differentiated cuboidal type II epithelial cells that are normally restricted to the alveoli. Lineage tracing studies showed that the ectopic alveolar type II cells in Foxm1-deficient airways were derived from Clara cells. Deletion of Foxm1 inhibited Sox2 and Scgb1a1, both of which are critical for differentiation and function of Clara cells. In co-transfection experiments, Foxm1 directly bound to and induced transcriptional activity of Scgb1a1 and Sox2 promoters. Foxm1 is required for differentiation and maintenance of epithelial cells lining conducting airways.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Factores de Transcripción Forkhead/metabolismo , Sistema Respiratorio/citología , Sistema Respiratorio/crecimiento & desarrollo , Animales , Células Epiteliales/citología , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Pulmón/citología , Pulmón/crecimiento & desarrollo , Ratones , Alveolos Pulmonares/citología , Factores de Transcripción SOXB1/metabolismo , Transcriptoma , Uteroglobina/metabolismo
20.
Front Cell Dev Biol ; 11: 1209518, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363726

RESUMEN

Introduction: Vascular remodeling and compromised alveolar development are hallmarks of chronic pulmonary diseases such as bronchopulmonary dysplasia (BPD). Despite advances in neonatal healthcare the number of BPD cases worldwide continues to increase. One approach to overcoming the premature arrest in lung development seen in BPD is to stimulate neonatal angiogenesis via delivery and engraftment of endothelial progenitor cells (EPCs). One such population is resident to the pulmonary microvasculature and expresses both FOXF1 and c-KIT. Previous studies have shown that c-KIT+FOXF1+ EPCs are highly sensitive to elevated levels of oxygen (hyperoxia) and are decreased in premature infants with BPD and hyperoxia-induced BPD mouse models. We hypothesize that restoring EPCs through transplantation of c-KIT+FOXF1+ EPCs derived in vitro from pluripotent embryonic stem cells (ESCs), will stimulate neonatal angiogenesis and alveolarization in mice with hyperoxia-induced lung injury. Methods: Utilizing a novel ESC line with a FOXF1:GFP reporter, we generated ESC-derived c-KIT+FOXF1+ EPCs in vitro. Using a second ESC line which contains FOXF1:GFP and tdTomato transgenes, we differentiated ESCs towards c-KIT+FOXF1+ EPCs and tracked them in vivo after injection into the neonatal circulation of hyperoxia-injured mice. After a recovery period in room air conditions, we analyzed c-KIT+FOXF1+ EPC engraftment and quantified the number of resident and circulating endothelial cells, the size of alveolar spaces, and the capillary density after EPC transplantations. Results and conclusion: Herein, we demonstrate that addition of BMP9 to the directed endothelial differentiation protocol results in very efficient generation of c-KIT+FOXF1+ EPCs from pluripotent ESCs. ESC-derived c-KIT+FOXF1+ EPCs effectively engraft into the pulmonary microvasculature of hyperoxia-injured mice, promote vascular remodeling in alveoli, increase the number of resident and circulating endothelial cells, and improve alveolarization. Altogether, these results provide a proof-of-principle that cell therapy with ESC-derived c-KIT+FOXF1+ EPCs can prevent alveolar simplification in a hyperoxia-induced BPD mouse model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA