Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Mol Genet ; 26(2): 367-382, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28365779

RESUMEN

The cellular and molecular mechanisms underlying neurodevelopmental conditions such as autism spectrum disorders have been studied intensively for decades. The ability to generate patient-specific induced pluripotent stem cells (iPSCs) now offers a novel strategy for modelling human diseases. Recent studies have reported the derivation of iPSCs from patients with neurological disorders. The key challenge remains the demonstration of disease-related phenotypes and the ability to model the disease. Here we report a case study with signs of neurodevelopmental disorders (NDDs) harbouring chromosomal rearrangements that were sequenced using long-insert DNA paired-end tag (DNA-PET) sequencing approach. We identified the disruption of a specific gene, GTDC1. By deriving iPSCs from this patient and differentiating them into neural progenitor cells (NPCs) and neurons we dissected the disease process at the cellular level and observed defects in both NPCs and neuronal cells. We also showed that disruption of GTDC1 expression in wild type human NPCs and neurons showed a similar phenotype as patient's iPSCs. Finally, we utilized a zebrafish model to demonstrate a role for GTDC1 in the development of the central nervous system. Our findings highlight the importance of combining sequencing technologies with the iPSC technology for NDDs modelling that could be applied for personalized medicine.


Asunto(s)
Trastorno del Espectro Autista/genética , Glicosiltransferasas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Diferenciación Celular/genética , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Genoma Humano , Glicosiltransferasas/biosíntesis , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/patología , Neuronas/metabolismo , Neuronas/patología , Medicina de Precisión , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
2.
Cell Rep ; 26(9): 2494-2508.e7, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30811996

RESUMEN

In Huntington disease (HD), the analysis of tissue-specific CAG repeat length effects has been challenging, given the difficulty in obtaining relevant patient tissues with a broad range of CAG repeat lengths. We used genome editing to generate an allelic panel of isogenic HD (IsoHD) human embryonic stem cell (hESC) lines carrying varying CAG repeat lengths in the first exon of HTT. Functional analyses in differentiated neural cells revealed CAG repeat length-related abnormalities in mitochondrial respiration and oxidative stress and enhanced susceptibility to DNA damage. To explore tissue-specific effects in HD, we differentiated the IsoHD panel into neural progenitor cells, neurons, hepatocytes, and muscle cells. Transcriptomic and proteomic analyses of the resultant cell types identified CAG repeat length-dependent and cell-type-specific molecular phenotypes. We anticipate that the IsoHD panel and transcriptomic and proteomic data will serve as a versatile, open-access platform to dissect the molecular factors contributing to HD pathogenesis.


Asunto(s)
Células Madre Embrionarias/citología , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Repeticiones de Trinucleótidos , Alelos , Diferenciación Celular , Línea Celular , Sistema Nervioso Central/citología , Daño del ADN , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Células Madre Pluripotentes/citología , Proteómica
3.
PLoS One ; 9(6): e90852, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24603971

RESUMEN

Delineating candidate genes at the chromosomal breakpoint regions in the apparently balanced chromosome rearrangements (ABCR) has been shown to be more effective with the emergence of next-generation sequencing (NGS) technologies. We employed a large-insert (7-11 kb) paired-end tag sequencing technology (DNA-PET) to systematically analyze genome of four patients harbouring cytogenetically defined ABCR with neurodevelopmental symptoms, including developmental delay (DD) and speech disorders. We characterized structural variants (SVs) specific to each individual, including those matching the chromosomal breakpoints. Refinement of these regions by Sanger sequencing resulted in the identification of five disrupted genes in three individuals: guanine nucleotide binding protein, q polypeptide (GNAQ), RNA-binding protein, fox-1 homolog (RBFOX3), unc-5 homolog D (C.elegans) (UNC5D), transmembrane protein 47 (TMEM47), and X-linked inhibitor of apoptosis (XIAP). Among them, XIAP is the causative gene for the immunodeficiency phenotype seen in the patient. The remaining genes displayed specific expression in the fetal brain and have known biologically relevant functions in brain development, suggesting putative candidate genes for neurodevelopmental phenotypes. This study demonstrates the application of NGS technologies in mapping individual gene disruptions in ABCR as a resource for deciphering candidate genes in human neurodevelopmental disorders (NDDs).


Asunto(s)
Puntos de Rotura del Cromosoma , Discapacidades del Desarrollo/genética , Trastornos del Desarrollo del Lenguaje/genética , Secuencia de Bases , Inversión Cromosómica , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Análisis de Secuencia de ADN , Translocación Genética
4.
Eur J Med Genet ; 56(11): 635-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24013099

RESUMEN

7qter deletion syndrome includes prenatal and/or postnatal growth retardation, microcephaly, psychomotor delay or mental retardation and a characteristic dysmorphism. If clinical features are well described, the molecular mechanisms underlying the 7qter deletion syndrome remain unknown. Those deletions usually arise de novo. Here, we describe a young boy with an abnormal phenotype consistent with a 7qter deletion syndrome. High resolution genomic analysis (Affymetrix Human Genome Wide SNP 6.0) revealed a 7q36.3 deletion encompassing NCAPG2, ESYT2, WDR60 and VIPR2, inherited from his asymptomatic father and paternal grandfather. In addition, the patient also harbored a MCPH1 deletion inherited from his healthy mother. Combined NCAPG2 and MCPH1 deletions were correlated with low mRNA levels and protein expression in the patient. MCPH1 and NCAPG2 proteins interaction is known to control chromosome structure and we thus propose that double heterozygosity for null mutations of those two genes of the Condensin II system contribute to mental deficiency with severe microcephaly phenotype.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Eliminación de Gen , Discapacidad Intelectual/genética , Microcefalia/genética , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular , Niño , Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos Par 7/genética , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/metabolismo , Sitios Genéticos/genética , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Microcefalia/diagnóstico , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Linaje , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA