Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(17): 6764-6773, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619911

RESUMEN

Tremendous efforts have been made to develop practical and efficient microfluidic cell and particle sorting systems; however, there are technological limitations in terms of system complexity and low operability. Here, we propose a sheath flow generator that can dramatically simplify operational procedures and enhance the usability of microfluidic cell sorters. The device utilizes an embedded polydimethylsiloxane (PDMS) sponge with interconnected micropores, which is in direct contact with microchannels and seamlessly integrated into the microfluidic platform. The high-density micropores on the sponge surface facilitated fluid drainage, and the drained fluid was used as the sheath flow for downstream cell sorting processes. To fabricate the integrated device, a new process for sponge-embedded substrates was developed through the accumulation, incorporation, and dissolution of PMMA microparticles as sacrificial porogens. The effects of the microchannel geometry and flow velocity on the sheath flow generation were investigated. Furthermore, an asymmetric lattice-shaped microchannel network for cell/particle sorting was connected to the sheath flow generator in series, and the sorting performances of model particles, blood cells, and spiked tumor cells were investigated. The sheath flow generation technique developed in this study is expected to streamline conventional microfluidic cell-sorting systems as it dramatically improves versatility and operability.


Asunto(s)
Separación Celular , Técnicas Analíticas Microfluídicas , Humanos , Separación Celular/instrumentación , Separación Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Porosidad , Dimetilpolisiloxanos/química , Dispositivos Laboratorio en un Chip , Polimetil Metacrilato/química
2.
Analyst ; 147(8): 1622-1630, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35297918

RESUMEN

Numerous attempts have been made to develop efficient systems to purify trace amounts of circulating tumor cells (CTCs) from blood samples. However, current technologies are limited by complexities in device fabrication, system design, and process operability. Here we describe a facile, scalable, and highly efficient approach to physically capturing CTCs using a rationally designed microfluidic isolator with an array of microslit channels. The wide but thin microslit channels with a depth of several micrometers selectively capture CTCs, which are larger and less deformable than other blood cells, while allowing other blood cells to just flow through. We investigated in detail the effects of the microchannel geometry and operating parameters on the capture efficiency and selectivity of several types of cultured tumor cells spiked in blood samples as the CTC model. Additionally, in situ post-capture staining of the captured cells was demonstrated to investigate the system's applicability to clinical cancer diagnosis. The presented approach is simple in operation but significantly effective in capturing specific cells and hence it may have great potential in implementating cell physics-based CTC isolation techniques for cancer liquid biopsy.


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Línea Celular Tumoral , Separación Celular/métodos , Humanos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Células Neoplásicas Circulantes/patología
3.
Anal Chem ; 92(3): 2580-2588, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31822057

RESUMEN

Visualization and quantification of intracellular molecules of mammalian cells are crucial steps in clinical diagnosis, drug development, and basic biological research. However, conventional methods rely mostly on labor-intensive, centrifugation-based manual operations for exchanging the cell carrier medium and have limited reproducibility and recovery efficiency. Here we present a microfluidic cell processor that can perform four-step exchange of carrier medium, simply by introducing a cell suspension and fluid reagents into the device. The reaction time period for each reaction step, including fixation, membrane permeabilization, and staining, was tunable in the range of 2 to 15 min by adjusting the volume of the reaction tube connecting the neighboring exchanger modules. We double-stained the cell nucleus and cytoskeleton (F-actin) using the presented device with an overall reaction period of ∼30 min, achieving a high recovery ratio and high staining efficiency. Additionally, intracellular cytokine (IL-2) was visualized for T cells to demonstrate the feasibility of the device as a pretreatment system for downstream flow-cytometric analysis. The presented approach would facilitate the development of laborless, automated microfluidic systems that integrate cell processing and analysis operations and would pave a new path to high-throughput biological experiments.


Asunto(s)
Automatización , Citocinas/análisis , Técnicas Analíticas Microfluídicas , Animales , Línea Celular , Núcleo Celular/química , Núcleo Celular/metabolismo , Citocinas/biosíntesis , Citoesqueleto/química , Citoesqueleto/metabolismo , Diseño de Equipo , Citometría de Flujo/instrumentación , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Células 3T3 NIH
4.
J Hepatol ; 68(4): 744-753, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29288124

RESUMEN

BACKGROUND & AIMS: Since the first account of the myth of Prometheus, the amazing regenerative capacity of the liver has fascinated researchers because of its enormous medical potential. Liver regeneration is promoted by multiple types of liver cells, including hepatocytes and liver non-parenchymal cells (NPCs), through complex intercellular signaling. However, the mechanism of liver organogenesis, especially the role of adult hepatocytes at ectopic sites, remains unknown. In this study, we demonstrate that hepatocytes alone spurred liver organogenesis to form an organ-sized complex 3D liver that exhibited native liver architecture and functions in the kidneys of mice. METHODS: Isolated hepatocytes were transplanted under the kidney capsule of monocrotaline (MCT) and partial hepatectomy (PHx)-treated mice. To determine the origin of NPCs in neo-livers, hepatocytes were transplanted into MCT/PHx-treated green fluorescent protein transgenic mice or wild-type mice transplanted with bone marrow cells isolated from green fluorescent protein-mice. RESULTS: Hepatocytes engrafted at the subrenal space of mice underwent continuous growth in response to a chronic hepatic injury in the native liver. More than 1.5 years later, whole organ-sized liver tissues with greater mass than those of the injured native liver had formed. Most remarkably, we revealed that at least three types of NPCs with similar phenotypic features to the liver NPCs were recruited from the host tissues including bone marrow. The neo-livers in the kidney exhibited liver-specific functions and architectures, including sinusoidal vascular systems, zonal heterogeneity, and emergence of bile duct cells. Furthermore, the neo-livers successfully rescued the mice with lethal liver injury. CONCLUSION: Our data clearly show that adult hepatocytes play a leading role as organizer cells in liver organogenesis at ectopic sites via NPC recruitment. LAY SUMMARY: The role of adult hepatocytes at ectopic locations has not been clarified. In this study, we demonstrated that engrafted hepatocytes in the kidney proliferated, recruited non-parenchymal cells from host tissues including bone marrow, and finally created an organ-sized, complex liver system that exhibited liver-specific architectures and functions. Our results revealed previously undescribed functions of hepatocytes to direct liver organogenesis through non-parenchymal cell recruitment and organize multiple cell types into a complex 3D liver at ectopic sites. Transcript profiling: Microarray data are deposited in GEO (GEO accession: GSE99141).


Asunto(s)
Hepatocitos/fisiología , Riñón/citología , Hígado/embriología , Organogénesis , Animales , Movimiento Celular , Proliferación Celular , Hepatocitos/trasplante , Regeneración Hepática , Ratones , Ratones Endogámicos C57BL
5.
Toxicol Pathol ; 43(2): 233-48, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25107573

RESUMEN

Peroxisome proliferator (PP)-activated receptor-α (PPARα) agonists exhibit species-specific effects on livers of the rodent and human (h), which has been considered to reside in the difference of PPARα gene structures. However, the contribution of h-hepatocytes (heps) to the species-specificity remains to be clarified. In this study, the effects of fenofibrate were investigated using a hepatocyte-humanized chimeric mouse (m) model whose livers were replaced with h-heps at >70%. Fenofibrate induced hepatocellular hypertrophy, cell proliferation, and peroxisome proliferation in livers of severe combined immunodeficiency (SCID) mice, but not in the h-hep of chimeric mouse livers. Fenofibrate increased the expression of the enzymes of ß- and ω-hydroxylation and deoxygenation of lipids at both gene and protein levels in SCID mouse livers, but not in the h-heps of chimeric mouse livers, supporting the studies with h-PPARα-transgenic mice, a hitherto reliable model for studying the regulation of h-PPARα in the h-liver in most respects, except the induction of the peroxisome proliferation. This study indicates the importance of not only h-PPARα gene but also h-heps themselves to correctly predict effects of fibrates on h-livers, and, therefore, suggests that the chimeric mouse is a currently available, consistent, and reliable model to obtain pharmaceutical data concerning the effects of fibrates on h-livers.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , PPAR alfa/metabolismo , Animales , Trasplante de Células , Femenino , Fenofibrato/farmacología , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Hipolipemiantes/farmacología , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones SCID , PPAR alfa/genética , Peroxisomas/efectos de los fármacos , Proteómica , Transducción de Señal/efectos de los fármacos
6.
J Control Release ; 366: 160-169, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154542

RESUMEN

Hepatic tissue engineering has been applied for the treatment of intractable liver diseases, and hepatocyte sheets are promising for this purpose. However, hepatocyte sheets have poor survival after transplantation because of their high metabolic activity. In this study, we aimed to develop basic fibroblast growth factor (bFGF)-releasing nanoparticles to prolong the survival of hepatocyte sheets after transplantation. The nanoparticles were prepared by electrospraying a bFGF-dispersed poly(D,l-lactide-co-glycolide) emulsion. bFGF-loaded PLGA nanoparticles can be developed by optimizing the applied electrospray voltage and the oil:water ratio of the emulsion. The prepared nanoparticles exhibited prompt release at the initial duration and continuous gradual release at the subsequent duration. Hepatocyte sheet engraftment was evaluated by transplanting hepatocyte sheets containing the prepared nanoparticles into rats. The hepatocyte sheets with the prepared nanoparticles exhibited longer survival than those without the bFGF nanoparticles or solution owing to the local and continuous release of bFGF from the nanoparticles and the subsequent enhanced angiogenesis at the transplantation site. These results indicated that the prepared bFGF-releasing nanoparticles can enhance the efficiency of hepatocyte sheet transplantation. The developed bFGF-releasing nanoparticles would be useful for the transplantation of cellular tissue with post-transplantation survival challenges.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Hepatocitos , Nanopartículas , Animales , Ratas , Emulsiones , Hepatocitos/trasplante , Ingeniería de Tejidos/métodos
7.
Biochem Biophys Res Commun ; 431(2): 203-9, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23313481

RESUMEN

Mesenchymal stem cells (MSCs) have shown extreme clinical promise as a therapeutic regenerative system in the treatment of numerous types of diseases. A recent report, however, documented lethal pulmonary thromboembolism in a patient following the administration of adipose-derived MSCs (ADSCs). In our study, we designed experiments to examine the role of tissue factor (TF), which is highly expressed at the level of mRNA and localized to the cell surface of cultured MSCs, as a triggering factor in the procoagulative cascade activated by infused MSCs. A high mortality rate of ~85% in mice was documented following intravenous infusion of mouse ADSCs within 24 h due to the observation of pulmonary embolism. Rotation thromboelastometry and plasma clotting assay demonstrated significant procoagulation by the cultured mouse ADSCs, and preconditioning of ADSCs with an anti-TF antibody or usage of factor VII deficient plasma in the assay successfully suppressed the procoagulant properties. These properties were also observed in human ADSCs, and could be suppressed by recombinant human thrombomodulin. In uncultured mouse adipose-derived cells (ADCs), the TF-triggered procoagulant activity was not observed and all mice infused with these uncultured ADCs survived after 24 h. This clearly demonstrated that the process of culturing cells plays a critical role in sensitizing these cells as a procoagulator through the induction of TF expression. Our results would recommend that clinical applications of MSCs to inhibit TF activity using anti-coagulant agents or genetic approaches to maximize clinical benefit to the patients.


Asunto(s)
Coagulación Sanguínea , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Células Madre Mesenquimatosas/metabolismo , Embolia Pulmonar/etiología , Tromboplastina/metabolismo , Tejido Adiposo/citología , Animales , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Embolia Pulmonar/metabolismo , Trombomodulina
8.
J Biosci Bioeng ; 135(5): 417-422, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36931921

RESUMEN

Technologies for efficiently expanding Chinese hamster ovary (CHO) cells, the primary host cells for antibody production, are of growing industrial importance. Various processes for the use of microcarriers in CHO suspension cultures have been developed, but there have been very few studies on cell-adhesive microcarriers that are similar in size to cells. In this study, we proposed a new approach to suspension cultures of CHO cells using cell-sized condensed and crosslinked gelatin microparticles (GMPs) as carriers. Unlike commercially available carriers with sizes typically greater than 100 µm, each cell can adhere to the surface of multiple particles and form loose clusters with voids. We prepared GMPs of different average diameters (27 and 48 µm) and investigated their effects on cell adhesion and cluster formation. In particular, small GMPs promoted cell proliferation and increased IgG4 production by the antibody-producing CHO cell line. The data obtained in this study suggest that cell-sized particles, rather than larger ones, enhance cell proliferation and function, providing useful insights for improving suspension-culture-based cell expansion and cell-based biologics production for a wide range of applications.


Asunto(s)
Técnicas de Cultivo de Célula , Gelatina , Cricetinae , Animales , Cricetulus , Células CHO , Proliferación Celular
9.
Lab Chip ; 23(9): 2257-2267, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37038847

RESUMEN

Spheroid formation assisted by microengineered chambers is a versatile approach for morphology-controlled three-dimensional (3D) cell cultivation with physiological relevance to human tissues. However, the limitation in diffusion-based oxygen/nutrient transport has been a critical issue for the densely packed cells in spheroids, preventing maximization of cellular functions and thus limiting their biomedical applications. Here, we have developed a multiscale microfluidic system for the perfusion culture of spheroids, in which porous microchambers, connected with microfluidic channels, were engineered. A newly developed process of centrifugation-assisted replica molding and salt-leaching enabled the formation of single micrometer-sized pores on the chamber surface and in the substrate. The porous configuration generates a vertical flow to directly supply the medium to the spheroids, while avoiding the formation of stagnant flow regions. We created seamlessly integrated, all PDMS/silicone-based microfluidic devices with an array of microchambers. Spheroids of human liver cells (HepG2 cells) were formed and cultured under vertical-flow perfusion, and the proliferation ability and liver cell-specific functions were compared with those of cells cultured in non-porous chambers with a horizontal flow. The presented system realizes both size-controlled formation of spheroids and direct medium supply, making it suitable as a precision cell culture platform for drug development, disease modelling, and regenerative medicine.


Asunto(s)
Microfluídica , Esferoides Celulares , Humanos , Hepatocitos , Perfusión , Hígado
10.
J Biosci Bioeng ; 133(3): 265-272, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34903469

RESUMEN

Numerous attempts have been made to organize isolated primary hepatocytes into functional three-dimensional (3D) constructs, but technologies to introduce extracellular matrix (ECM) components into such assemblies have not been fully developed. Here we report a new approach to forming hepatocyte-based 3D tissues using fibrillized collagen microparticles (F-CMPs) as intercellular binders. We created thick tissues with a thickness of ∼200 µm simply by mixing F-CMPs with isolated primary rat hepatocytes and culturing them in cell culture inserts. Owing to the incorporated F-CMPs, the circular morphology of the formed tissues was stabilized, which was strong enough to be manually manipulated and retrieved from the chamber of the insert. We confirmed that the F-CMPs dramatically improved the cell viability and hepatocyte-specific functions such as albumin production and urea synthesis in the formed tissues. The presented approach provides a versatile strategy for hepatocyte-based tissue engineering, and will have a significant impact on biomedical applications and pharmaceutical research.


Asunto(s)
Colágeno , Hepatocitos , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular , Células Cultivadas , Ratas , Ingeniería de Tejidos/métodos
11.
Am J Pathol ; 177(2): 654-65, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20522646

RESUMEN

Liver mass is optimized in relation to body mass. Rat (r) and human (h) hepatocytes were transplanted into liver-injured immunodeficient mice and allowed to proliferate for 3 or 11 weeks, respectively, when the transplants stopped proliferating. Liver/body weight ratio was normal throughout in r-hepatocyte-bearing mice (r-hep-mice), but increased continuously in h-hepatocyte-bearing mice (h-hep-mice), until reaching approximately three times the normal m-liver size, which was considered to be hyperplasia of h-hepatocytes because there were no significant differences in cell size among host (mouse [m-]) and donor (r- and h-) hepatocytes. Transforming growth factor-beta (TGF-beta) type I receptor, TGF-beta type II receptor, and activin A type IIA receptor mRNAs in proliferating r-hepatocytes of r-hep-mice were lower than in resting r-hepatocytes (normal levels) and increased to normal levels during the termination phase. Concomitantly, m-hepatic stellate cells began to express TGF-beta proteins. In stark contrast, TGF-beta type II receptor and activin A type IIA receptor mRNAs in h-hepatocytes remained low throughout and m-hepatic stellate cells did not express TGF-beta in h-hep-mice. As expected, Smad2 and 3 translocated into nuclei in r-hep-mice but not in h-hep-mice. Histological analysis showed a paucity of m-stellate cells in h-hepatocyte colonies of h-hep-mouse liver. We conclude that m-stellate cells are able to normally interact with concordant r-hepatocytes but not with discordant h-hepatocytes, which seems to be at least partly responsible for the failure of the liver size optimization in h-hep-mice.


Asunto(s)
Hepatocitos/metabolismo , Hepatocitos/trasplante , Hiperplasia/patología , Hígado/patología , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Adolescente , Adulto , Animales , Niño , Femenino , Hepatocitos/citología , Humanos , Hiperplasia/metabolismo , Lactante , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Trasplante Heterólogo
12.
Mater Sci Eng C Mater Biol Appl ; 129: 112417, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34579926

RESUMEN

Artificial biological scaffolds made of extracellular matrix (ECM) components, such as type I collagen, provide ideal physicochemical cues to various cell culture platforms. However, it remains a challenge to fabricate micrometer-sized ECM materials with precisely controlled morphologies that could reconstitute the 3-dimensional (3D) microenvironments surrounding cells. In the present study, we proposed a unique process to fabricate fragmented collagen microfibers using a microfluidic laminar-flow system. The continuous flow of an acidic collagen solution was neutralized to generate solid fibers, which were subsequently fragmented by applying a gentle shear stress in a polyanion-containing phosphate buffer. The morphology of the fiber fragment was controllable in a wide range by changing the type and/or concentration of the polyanion and by tuning the applied shear stress. The biological benefits of the fragmented fibers were investigated through the formation of multicellular spheroids composed of primary rat hepatocytes and microfibers on non-cell-adhesive micro-vessels. The microfibers enhanced the survival and functions of the hepatocytes and reproduced proper cell polarity, because the fibers facilitated the formation of cell-cell and cell-matrix interactions while modulating the close packing of cells. These results clearly indicated that the microengineered fragmented collagen fibers have great potential to reconstitute extracellular microenvironments for hepatocytes in 3D culture, which will be of significant benefit for cell-based drug testing and bottom-up tissue engineering.


Asunto(s)
Colágeno , Microfluídica , Animales , Matriz Extracelular , Hepatocitos , Polielectrolitos , Ratas , Ingeniería de Tejidos
13.
ACS Omega ; 5(34): 21641-21650, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32905425

RESUMEN

Although many types of technologies for hydrogel-based cell cultivation have recently been developed, strategies to integrate cell-adhesive micrometer-sized supports with bulk-scale hydrogel platforms have not been fully established. Here, we present a highly unique approach to produce cell-adhesive, protein-based microfibers assisted by the sacrificial template of alginate; we applied these fibers as microengineered scaffolds for hydrogel-based cell encapsulation. Two types of microfluidic devices were designed and fabricated: a single-layered device for producing relatively thick (Φ of 10-60 µm) alginate-protein composite fibers with a uniform cross-sectional morphology and a four-layered device for preparing thinner (Φ of ∼4 µm) ones through the formation of patterned microfibers with eight distinct alginate-protein composite regions. Following chemical cross-linking of protein molecules and the subsequent removal of the sacrificial alginate from the double-network matrices, microfibers composed only of cross-linked proteins were obtained. We used gelatin, albumin, and hemoglobin as the protein material, and the gelatin-based cell-adhesive fibers were further encapsulated in hydrogels together with the mammalian cells. We clarified that the thinner fibers were especially effective in promoting cell proliferation, and the shape of the constructs was maintained even after removing the hydrogel matrices. The presented approach offers cells with biocompatible solid supports that enhance cell adhesion and proliferation, paving the way for the next generation of techniques for tissue engineering and multicellular organoid formation.

14.
Hepatology ; 47(2): 435-46, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18098326

RESUMEN

UNLABELLED: We previously identified a small population of replicative hepatocytes in long-term cultures of human adult parenchymal hepatocytes (PHs) at a frequency of 0.01%-0.09%. These hepatocytes were able to grow continuously through serial subcultures as colony-forming parenchymal hepatocytes (CFPHs). In the present study, we generated gene expression profiles for cultured CFPHs and found that they expressed cytokeratin 19, CD90 (Thy-1), and CD44, but not mature hepatocyte markers such as tryptophan-2,3-dioxygenase (TO) and glucose-6-phosphatase (G6P), confirming that these cells are hepatic progenitor-like cells. The cultured CFPHs were resistant to infection with human hepatitis B virus (HBV). To examine the growth and differentiation capacity of the cells in vivo, serially subcultured CFPHs were transplanted into the progeny of a cross between albumin promoter/enhancer-driven urokinase plasminogen activator-transgenic mice and severe combined immunodeficient (SCID) mice. The cells were engrafted into the liver and were able to grow for at least 10 weeks, ultimately reaching a maximum occupancy rate of 27%. The CFPHs in the host liver expressed differentiation markers such as TO, G6P, and cytochrome P450 subtypes and could be infected with HBV. CFPH-chimeric mice with a relatively high replacement rate exhibited viremia and had high serum levels of hepatitis B surface antigen. CONCLUSION: Serially subcultured human hepatic progenitor-like cells from postnatal livers successfully repopulated injured livers and exhibited several phenotypes of mature hepatocytes, including susceptibility to HBV. In vitro-expanded CFPHs can be used to characterize the differentiation state of human hepatic progenitor-like cells.


Asunto(s)
Virus de la Hepatitis B , Hepatocitos/fisiología , Hepatocitos/trasplante , Quimera por Trasplante , Adolescente , Animales , Células Cultivadas , Niño , Ensayo de Unidades Formadoras de Colonias , Criopreservación , Femenino , Perfilación de la Expresión Génica , Hepatocitos/citología , Hepatocitos/virología , Humanos , Lactante , Masculino , Ratones , Ratones SCID , Ratones Transgénicos
15.
ACS Appl Bio Mater ; 2(5): 2237-2245, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35030662

RESUMEN

With the recent progress in three-dimensional (3D) cell culture techniques for regenerative medicine and drug development, hydrogel-based tissue engineering approaches that can precisely organize cells into functional formats have attracted increasing attention. However, challenges remain in creating continuous microconduits within hydrogels to effectively deliver oxygen and nutrients to the embedded cells. Here we propose a one-step, fully liquid state, and all-aqueous process to create porous hydrogels that can encapsulate living cells without the need for extensive processing protocols, including the incorporation and removal of sacrificial materials. An unusual bicontinuous state of aqueous two-phase dispersion was utilized, and one of the two phases, encapsulating living cells, was rapidly photo-cross-linked to form hydrogel sponges. We optimized the volumetric mixing ratio of gelatin methacrylate (GelMA)-rich and polyethylene glycol (PEG)-rich solutions and investigated the effects of the formed continuous microconduits on the cell functions by creating liver-tissue mimetic 3D constructs. The presented technology provides a facile and versatile strategy for fabricating microstructured hydrogels for cell culture and would bring new insights for the development of porous materials by fully aqueous bicontinuous dispersions.

16.
RSC Adv ; 9(16): 9136-9144, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35517655

RESUMEN

Vascular tissue models created in vitro are of great utility in the biomedical research field, but versatile, facile strategies are still under development. In this study, we proposed a new approach to prepare vascular tissue models in PDMS-based composite channel structures embedded with barium salt powders. When a cell-containing hydrogel precursor solution was continuously pumped in the channel, the precursor solution in the vicinity of the channel wall was selectively gelled because of the barium ions as the gelation agent supplied to the flow. Based on this concept, we were able to prepare vascular tissue models, with diameters of 1-2 mm and with tunable morphologies, composed of smooth muscle cells in the hydrogel matrix and endothelial cells on the lumen. Perfusion culture was successfully performed under a pressurized condition of ∼120 mmHg. The presented platform is potentially useful for creating vascular tissue models that reproduce the physical and morphological characteristics similar to those of vascular tissues in vivo.

17.
Biochem Biophys Res Commun ; 377(4): 1259-64, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18983821

RESUMEN

The liver is capable of undergoing a proliferative growth, known as direct hyperplasia, in which the naïve liver increases in size due to stimulation with primary mitogens. To produce accurate gene expression data, housekeeping genes (HKGs) that are stably expressed need to be determined. In the present study, liver regeneration was promoted via the direct hyperplasia mode by inducing mice with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene. Gene expression levels of nine commonly used HKGs were analyzed in the liver of different timing during the regeneration. The stability of gene expression was assessed using two different analysis programs, geNorm and NormFinder. Using these analyses, we identified that PPIA and RPL4 showed the most stable expression regardless of the status of the liver regeneration. In conclusion, the present study demonstrated that the use of PPIA and RPL4 were the most optimal in providing reliable normalization of gene expression when assessing liver regeneration attributed to direct hyperplasia.


Asunto(s)
Perfilación de la Expresión Génica , Hígado/metabolismo , Hígado/patología , Animales , Proliferación Celular , Expresión Génica , Marcadores Genéticos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hiperplasia , Hígado/efectos de los fármacos , Ratones , Isomerasa de Peptidilprolil/genética , Piridinas/toxicidad , Proteínas Ribosómicas/genética
18.
Xenotransplantation ; 15(4): 235-45, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18957046

RESUMEN

BACKGROUND: Previously, we created, a chimeric mouse (humanized mouse), a severe combined immunodeficiency (SCID) mouse whose liver was >90% repopulated with human (h)-hepatocytes, which are useful for the testing of drug metabolism and toxicity, as well as a hepatitis B virus and hepatitis C virus-susceptible animal model. However, their small body size and small total blood volume limited the utilization for analytical purposes, which led us to develop a method to create a chimeric rat bearing h-hepatocyte-repopulated liver. METHODS: F344 nude rats devoid of T cells were irradiated with X-rays and injected with bone marrow cells (BMCs) from SCID mice (m(SCID)). The rate of replacement with m(SCID)-BMCs was evaluated by two-color flow cytometry analysis of peripheral blood mononuclear cells (PBMCs). After m(SCID)-BMCs repopulated the host bone marrow (BM), the rats were treated with retrorsine, partially hepatectomized (PHx), and transplanted with 5 x 10(6) h-hepatocytes isolated from the chimeric mice. h-Albumin (h-Alb) concentrations in the host blood and the expression levels of protein and mRNA of hepatocyte differentiation markers in the h-hepatocytes were evaluated by ELISA, immunostaining, and reverse transcription-PCR, respectively. RESULTS: The m(SCID)-BMCs successfully repopulated the rats, the percentage of mouse cells reaching 94% among host (r(nudeF344)) PBMCs at 4 weeks after m-BMC transplantation. h-Hepatocytes isolated from the chimeric mice were transplanted to the liver of the m(SCID)-BMC-repopulated rats. The engrafted h-hepatocytes expressed h-Alb and h-cytochrome P450 (CYP) subtypes and survived showing normal phenotypes until at least 3 weeks post-h-hepatocytes transplantation (h-HPCT). However, the blood concentrations of h-Alb declined at 4 weeks post-HPCT, concomitant with the emergence of both r(nudeF344)- and m(SCID)-macrophages, suggesting the rejection of h-hepatocytes due to the activation of macrophages. CONCLUSION: We developed a novel method to create a rat that bears the liver engrafted with h-hepatocytes, utilizing a rat with the BM composed of m(SCID)-BMCs as a host. This h-hepatocyte-bearing rat will be a valuable model for studying the immunologic mechanisms involved in xenogeneic transplantation and for generating rats with higher rates of repopulation with h-hepatocytes.


Asunto(s)
Hepatocitos/trasplante , Animales , Secuencia de Bases , Trasplante de Médula Ósea/inmunología , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Supervivencia de Injerto , Hepatocitos/inmunología , Hepatocitos/metabolismo , Humanos , Activación de Macrófagos , Ratones , Ratones SCID , ARN/genética , ARN/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Desnudas , Quimera por Trasplante , Trasplante Heterólogo
19.
Regen Ther ; 8: 65-72, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30271868

RESUMEN

INTRODUCTION: Islet transplantation is one of the most promising therapeutic approaches for patients with severe type 1 diabetes mellitus (T1DM). Transplantation of engineered islet cell sheets holds great potential for treating T1DM as it enables the creation of stable neo-islet tissues. However, a large mass of islet cell sheets is required for the subcutaneous transplantation to reverse hyperglycemia in diabetic mice. Here, we investigated whether the liver surface could serve as an alternative site for islet cell sheet transplantation. METHODS: Dispersed rat islet cells (0.8 × 106 cells) were cultured on laminin-332-coated thermoresponsive culture dishes. After 2 days of cultivation, we harvested the islet cell sheets by lowering the culture temperature using a support membrane with a gelatin gel. We transplanted two recovered islet cell sheets into the subcutaneous space or onto the liver surface of severe combined immunodeficiency (SCID) mice with streptozocin-induced diabetes. RESULTS: In the liver surface group, the non-fasting blood glucose level decreased rapidly within several days after transplantation. In marked contrast, the hyperglycemia state was maintained in the subcutaneous space transplantation group. The levels of rat C-peptide and insulin in the liver surface group were significantly higher than those in the subcutaneous space group. An immunohistological analysis confirmed that most of the islet cells engrafted on the liver surface were insulin-positive. The CD31-positive endothelial cells formed vascular networks within the neo-islets and in the surrounding tissues. In contrast, viable islet cells were not found in the subcutaneous space group. CONCLUSIONS: Compared with the subcutaneous space, a relatively small mass of islet cell sheets was enough to achieve normoglycemia in diabetic mice when the liver surface was selected as the transplantation site. Our results demonstrate that the optimization of the transplantation site for islet cell sheets leads to significant improvements in the therapeutic efficiency for T1DM.

20.
Lab Chip ; 18(9): 1378-1387, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29658964

RESUMEN

Cell migration and invasion are of significant importance in physiological phenomena, including wound healing and cancer metastasis. Here we propose a new system for quantitatively evaluating cancer cell invasion in a three-dimensional (3D), in vivo tissue-like environment. This system uses composite hydrogel microfibers whose cross section has a relatively soft micropassage region and that were prepared using a multilayered microfluidic device; cancer cells are encapsulated in the core and fibroblasts are seeded in the shell regions surrounding the core. Cancer cell proliferation is guided through the micropassage because of the physical restriction imposed by the surrounding solid shell regions. Quantitative analysis of cancer cell invasion is possible simply by counting the cancer cell colonies that form outside the fiber. This platform enables the evaluation of anticancer drug efficacy (cisplatin, paclitaxel, and 5-fluorouracil) based on the degree of invasion and the gene expression of cancer cells (A549 cells) with or without the presence of fibroblasts (NIH-3T3 cells). The presented hydrogel fiber-based migration assays could be useful for studying cell behaviors under 3D coculture conditions and for drug screening and evaluation.


Asunto(s)
Movimiento Celular/fisiología , Técnicas de Cocultivo/instrumentación , Hidrogeles/química , Técnicas Analíticas Microfluídicas/instrumentación , Invasividad Neoplásica/fisiopatología , Células A549 , Animales , Diseño de Equipo , Humanos , Ratones , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA