Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 31(12): 4650-62, 2011 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-21430164

RESUMEN

In rodents, cortical interneurons originate from the medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) according to precise temporal schedules. The mechanisms controlling the specification of CGE-derived interneurons and their role in cortical circuitry are still unknown. Here, we show that COUP-TFI expression becomes restricted to the dorsal MGE and CGE at embryonic day 13.5 in the basal telencephalon. Conditional loss of function of COUP-TFI in subventricular precursors and postmitotic cells leads to a decrease of late-born, CGE-derived, VIP (vasoactive intestinal peptide)- and CR (calretinin)-expressing bipolar cortical neurons, compensated by the concurrent increase of early-born MGE-derived, PV (parvalbumin)-expressing interneurons. Strikingly, COUP-TFI mutants are more resistant to pharmacologically induced seizures, a phenotype that is dependent on GABAergic signaling. Together, our data indicate that COUP-TFI controls the delicate balance between MGE- and CGE-derived cortical interneurons by regulating intermediate progenitor divisions and ultimately affecting the activity of the cortical inhibitory circuitry.


Asunto(s)
Factor de Transcripción COUP I/genética , Factor de Transcripción COUP I/fisiología , Corteza Cerebral/fisiología , Epilepsia/genética , Epilepsia/fisiopatología , Interneuronas/fisiología , Eminencia Media/fisiología , Animales , Antimetabolitos , Bromodesoxiuridina , Proliferación Celular , Corteza Cerebral/citología , Convulsivantes/farmacología , Resistencia a Medicamentos/genética , Electroencefalografía , Fenómenos Electrofisiológicos , Epilepsia/inducido químicamente , Inmunohistoquímica , Hibridación in Situ , Eminencia Media/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/citología , Red Nerviosa/fisiología , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología , Receptores de GABA-B/genética , Receptores de GABA-B/fisiología , Telencéfalo/citología , Telencéfalo/fisiología , Ácido gamma-Aminobutírico/fisiología
2.
Neuron ; 55(6): 930-41, 2007 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-17880896

RESUMEN

Ripples are sharp-wave-associated field oscillations (100-300 Hz) recorded in the hippocampus during behavioral immobility and slow-wave sleep. In epileptic rats and humans, a different and faster oscillation (200-600 Hz), termed fast ripples, has been described. However, the basic mechanisms are unknown. Here, we propose that fast ripples emerge from a disorganized ripple pattern caused by unreliable firing in the epileptic hippocampus. Enhanced synaptic activity is responsible for the irregular bursting of CA3 pyramidal cells due to large membrane potential fluctuations. Lower field interactions and a reduced spike-timing reliability concur with decreased spatial synchronization and the emergence of fast ripples. Reducing synaptically driven membrane potential fluctuations improves both spike-timing reliability and spatial synchronization and restores ripples in the epileptic hippocampus. Conversely, a lower spike-timing reliability, with reduced potassium currents, is associated with ripple shuffling in normal hippocampus. Therefore, fast ripples may reflect a pathological desynchronization of the normal ripple pattern.


Asunto(s)
Epilepsia/fisiopatología , Hipocampo/fisiopatología , Neuronas/fisiología , Animales , Interpretación Estadística de Datos , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Electrofisiología , Epilepsia/inducido químicamente , Epilepsia/patología , Análisis de Fourier , Hipocampo/citología , Hipocampo/patología , Inmunohistoquímica , Carbonato de Litio , Masculino , Potenciales de la Membrana/fisiología , Agonistas Muscarínicos , Neuronas/patología , Pilocarpina , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley
3.
PLoS One ; 6(7): e22372, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21829459

RESUMEN

Cognitive impairment is a major concern in temporal lobe epilepsy (TLE). While different experimental models have been used to characterize TLE-related cognitive deficits, little is known on whether a particular deficit is more associated with the underlying brain injuries than with the epileptic condition per se. Here, we look at the relationship between the pattern of brain damage and spatial memory deficits in two chronic models of TLE (lithium-pilocarpine, LIP and kainic acid, KA) from two different rat strains (Wistar and Sprague-Dawley) using the Morris water maze and the elevated plus maze in combination with MRI imaging and post-morten neuronal immunostaining. We found fundamental differences between LIP- and KA-treated epileptic rats regarding spatial memory deficits and anxiety. LIP-treated animals from both strains showed significant impairment in the acquisition and retention of spatial memory, and were unable to learn a cued version of the task. In contrast, KA-treated rats were differently affected. Sprague-Dawley KA-treated rats learned less efficiently than Wistar KA-treated animals, which performed similar to control rats in the acquisition and in a probe trial testing for spatial memory. Different anxiety levels and the extension of brain lesions affecting the hippocampus and the amydgala concur with spatial memory deficits observed in epileptic rats. Hence, our results suggest that hippocampal-dependent spatial memory is not necessarily affected in TLE and that comorbidity between spatial deficits and anxiety is more related with the underlying brain lesions than with the epileptic condition per se.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/patología , Conducta Espacial/efectos de los fármacos , Animales , Ansiedad , Conducta Animal , Electrofisiología , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/psicología , Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Ácido Kaínico/farmacología , Aprendizaje/efectos de los fármacos , Imagen por Resonancia Magnética , Masculino , Agonistas Muscarínicos/farmacología , Neuronas/patología , Pilocarpina/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA