Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 17(11): e3000532, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31697675

RESUMEN

Mkrn3, the maternally imprinted gene encoding the makorin RING-finger protein-3, has recently emerged as putative pubertal repressor, as evidenced by central precocity caused by MKRN3 mutations in humans; yet, the molecular underpinnings of this key regulatory action remain largely unexplored. We report herein that the microRNA, miR-30, with three binding sites in a highly conserved region of its 3' UTR, operates as repressor of Mkrn3 to control pubertal onset. Hypothalamic miR-30b expression increased, while Mkrn3 mRNA and protein content decreased, during rat postnatal maturation. Neonatal estrogen exposure, causing pubertal alterations, enhanced hypothalamic Mkrn3 and suppressed miR-30b expression in female rats. Functional in vitro analyses demonstrated a strong repressive action of miR-30b on Mkrn3 3' UTR. Moreover, central infusion during the juvenile period of target site blockers, tailored to prevent miR-30 binding to Mkrn3 3' UTR, reversed the prepubertal down-regulation of hypothalamic Mkrn3 protein and delayed female puberty. Collectively, our data unveil a novel hypothalamic miRNA pathway, involving miR-30, with a prominent role in the control of puberty via Mkrn3 repression. These findings expand our current understanding of the molecular basis of puberty and its disease states.


Asunto(s)
Hipotálamo/metabolismo , MicroARNs/fisiología , Maduración Sexual/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Sitios de Unión , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , MicroARNs/metabolismo , Ratas , Análisis de Secuencia de ADN
2.
Gastroenterology ; 144(3): 636-649.e6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23142626

RESUMEN

BACKGROUND & AIMS: Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. METHODS: Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. RESULTS: We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. CONCLUSIONS: Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Adiposidad/fisiología , Área Hipotalámica Lateral/fisiología , Hormonas Hipotalámicas/fisiología , Hígado/metabolismo , Melaninas/fisiología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Hormonas Hipofisarias/fisiología , Adipocitos/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Animales , Ingestión de Alimentos , Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/fisiopatología , Área Hipotalámica Lateral/efectos de los fármacos , Hormonas Hipotalámicas/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Lipogénesis/efectos de los fármacos , Lipogénesis/fisiología , Hígado/efectos de los fármacos , Masculino , Melaninas/administración & dosificación , Ratones , Enfermedad del Hígado Graso no Alcohólico , Hormonas Hipofisarias/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptores de la Hormona Hipofisaria/agonistas , Receptores de la Hormona Hipofisaria/fisiología , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología , Nervio Vago/fisiopatología
3.
JAMA ; 311(22): 2305-14, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24915262

RESUMEN

IMPORTANCE: Latino populations have one of the highest prevalences of type 2 diabetes worldwide. OBJECTIVES: To investigate the association between rare protein-coding genetic variants and prevalence of type 2 diabetes in a large Latino population and to explore potential molecular and physiological mechanisms for the observed relationships. DESIGN, SETTING, AND PARTICIPANTS: Whole-exome sequencing was performed on DNA samples from 3756 Mexican and US Latino individuals (1794 with type 2 diabetes and 1962 without diabetes) recruited from 1993 to 2013. One variant was further tested for allele frequency and association with type 2 diabetes in large multiethnic data sets of 14,276 participants and characterized in experimental assays. MAIN OUTCOME AND MEASURES: Prevalence of type 2 diabetes. Secondary outcomes included age of onset, body mass index, and effect on protein function. RESULTS: A single rare missense variant (c.1522G>A [p.E508K]) was associated with type 2 diabetes prevalence (odds ratio [OR], 5.48; 95% CI, 2.83-10.61; P = 4.4 × 10(-7)) in hepatocyte nuclear factor 1-α (HNF1A), the gene responsible for maturity onset diabetes of the young type 3 (MODY3). This variant was observed in 0.36% of participants without type 2 diabetes and 2.1% of participants with it. In multiethnic replication data sets, the p.E508K variant was seen only in Latino patients (n = 1443 with type 2 diabetes and 1673 without it) and was associated with type 2 diabetes (OR, 4.16; 95% CI, 1.75-9.92; P = .0013). In experimental assays, HNF-1A protein encoding the p.E508K mutant demonstrated reduced transactivation activity of its target promoter compared with a wild-type protein. In our data, carriers and noncarriers of the p.E508K mutation with type 2 diabetes had no significant differences in compared clinical characteristics, including age at onset. The mean (SD) age for carriers was 45.3 years (11.2) vs 47.5 years (11.5) for noncarriers (P = .49) and the mean (SD) BMI for carriers was 28.2 (5.5) vs 29.3 (5.3) for noncarriers (P = .19). CONCLUSIONS AND RELEVANCE: Using whole-exome sequencing, we identified a single low-frequency variant in the MODY3-causing gene HNF1A that is associated with type 2 diabetes in Latino populations and may affect protein function. This finding may have implications for screening and therapeutic modification in this population, but additional studies are required.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Adulto , Edad de Inicio , Anciano , Femenino , Genotipo , Hispánicos o Latinos/genética , Humanos , Masculino , México , Persona de Mediana Edad , Mutación Missense , Análisis de Secuencia de ADN , Estados Unidos
4.
J Neuroendocrinol ; : e13433, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041546

RESUMEN

Kisspeptins are essential regulators of the reproductive axis, with capacity to potently activate gonadotropin-releasing hormone neurons, acting also as central conduits for the metabolic regulation of fertility. Recent evidence suggests that kisspeptins per se may also modulate several metabolic parameters, including body weight, food intake or energy expenditure, but their actual roles and site(s) of action remain unclear. We present herein a series of studies addressing the metabolic effects of central and peripheral administration of kisspeptin-10 (Kp-10; 1 nmol and 3 nmol daily, respectively) for 11 days in mice of both sexes. To assess direct metabolic actions of Kp-10 versus those derived indirectly from its capacity to modulate gonadal hormone secretion, kisspeptin effects were tested in adult male and female mice gonadectomized and supplemented with fixed, physiological doses of testosterone or 17ß-estradiol, respectively. Central administration of Kp-10 decreased food intake in male mice, especially during the dark phase (~50%), which was accompanied by a reduction in total and nocturnal energy expenditure (~16%) and locomotor activity (~70%). In contrast, opposite patterns were detected in female mice, with an increase in total and nocturnal locomotor activity (>65%), despite no changes in food intake or energy expenditure. These changes were independent of body weight, as no differences were detected in mice of both sexes at the end of Kp-10 treatments. Peripheral administration of Kp-10 failed to alter any of the metabolic parameters analyzed, except for a decrease in locomotor activity in male mice and a subtle increase in 24 h food intake in female mice, denoting a predominant central role of kisspeptins in the control of energy metabolism. Finally, glucose tolerance and insulin sensitivity were not significantly affected by central or peripheral treatment with Kp-10. In conclusion, our data reveal a potential role of kisspeptins in the control of key metabolic parameters, including food intake, energy expenditure and locomotor activity, with a preferential action at central level, which is sex steroid-independent but sexually dimorphic.

5.
Metabolism ; 157: 155932, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729600

RESUMEN

BACKGROUND: Obesity-induced hypogonadism (OIH) is a prevalent, but often neglected condition in men, which aggravates the metabolic complications of overweight. While hypothalamic suppression of Kiss1-encoded kisspeptin has been suggested to contribute to OIH, the molecular mechanisms for such repression in obesity, and the therapeutic implications thereof, remain unknown. METHODS: A combination of bioinformatic, expression and functional analyses was implemented, assessing the role of the evolutionary-conserved miRNAs, miR-137 and miR-325, in mediating obesity-induced suppression of hypothalamic kisspeptin, as putative mechanism of central hypogonadism and metabolic comorbidities. The implications of such miR-137/325-kisspeptin interplay for therapeutic intervention in obesity were also explored using preclinical OIH models. RESULTS: MiR-137/325 repressed human KISS1 3'-UTR in-vitro and inhibited hypothalamic kisspeptin content in male rats, while miR-137/325 expression was up-regulated, and Kiss1/kisspeptin decreased, in the medio-basal hypothalamus of obese rats. Selective over-expression of miR-137 in Kiss1 neurons reduced Kiss1/ kisspeptin and partially replicated reproductive and metabolic alterations of OIH in lean mice. Conversely, interference of the repressive actions of miR-137/325 selectively on Kiss1 3'-UTR in vivo, using target-site blockers (TSB), enhanced kisspeptin content and reversed central hypogonadism in obese rats, together with improvement of glucose intolerance, insulin resistance and cardiovascular and inflammatory markers, despite persistent exposure to obesogenic diet. Reversal of OIH by TSB miR-137/325 was more effective than chronic kisspeptin or testosterone treatments in obese rats. CONCLUSIONS: Our data disclose that the miR-137/325-Kisspeptin repressive interaction is a major player in the pathogenesis of obesity-induced hypogonadism and a putative druggable target for improved management of this condition and its metabolic comorbidities in men suffering obesity. SIGNIFICANCE STATEMENT: Up to half of the men suffering obesity display also central hypogonadism, an often neglected complication of overweight that can aggravate the clinical course of obesity and its complications. The mechanisms for such obesity-induced hypogonadism remain poorly defined. We show here that the evolutionary conserved miR137/miR325 tandem centrally mediates obesity-induced hypogonadism via repression of the reproductive-stimulatory signal, kisspeptin; this may represent an amenable druggable target for improved management of hypogonadism and other metabolic complications of obesity.


Asunto(s)
Hipogonadismo , Hipotálamo , Kisspeptinas , MicroARNs , Obesidad , MicroARNs/genética , MicroARNs/metabolismo , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipogonadismo/complicaciones , Kisspeptinas/genética , Kisspeptinas/metabolismo , Animales , Obesidad/metabolismo , Obesidad/complicaciones , Obesidad/genética , Masculino , Ratas , Hipotálamo/metabolismo , Humanos , Ratones , Ratas Wistar , Comorbilidad
6.
J Pathol ; 227(2): 209-22, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22294347

RESUMEN

Hyperthyroidism is characterized in rats by increased energy expenditure and marked hyperphagia. Alterations of thermogenesis linked to hyperthyroidism are associated with dysregulation of hypothalamic AMPK and fatty acid metabolism; however, the central mechanisms mediating hyperthyroidism-induced hyperphagia remain largely unclear. Here, we demonstrate that hyperthyroid rats exhibit marked up-regulation of the hypothalamic mammalian target of rapamycin (mTOR) signalling pathway associated with increased mRNA levels of agouti-related protein (AgRP) and neuropeptide Y (NPY), and decreased mRNA levels of pro-opiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC), an area where mTOR co-localizes with thyroid hormone receptor-α (TRα). Central administration of thyroid hormone (T3) or genetic activation of thyroid hormone signalling in the ARC recapitulated hyperthyroidism effects on feeding and the mTOR pathway. In turn, central inhibition of mTOR signalling with rapamycin in hyperthyroid rats reversed hyperphagia and normalized the expression of ARC-derived neuropeptides, resulting in substantial body weight loss. The data indicate that in the hyperthyroid state, increased feeding is associated with thyroid hormone-induced up-regulation of mTOR signalling. Furthermore, our findings that different neuronal modulations influence food intake and energy expenditure in hyperthyroidism pave the way for a more rational design of specific and selective therapeutic compounds aimed at reversing the metabolic consequences of this disease.


Asunto(s)
Ingestión de Alimentos , Conducta Alimentaria , Hiperfagia/etiología , Hipertiroidismo/complicaciones , Hipotálamo/enzimología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Hiperfagia/enzimología , Hiperfagia/genética , Hiperfagia/fisiopatología , Hiperfagia/prevención & control , Hipertiroidismo/inducido químicamente , Hipertiroidismo/enzimología , Hipertiroidismo/genética , Hipertiroidismo/fisiopatología , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiopatología , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/enzimología , Neuropéptido Y/genética , Fosforilación , Proopiomelanocortina/genética , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Receptores alfa de Hormona Tiroidea/metabolismo , Factores de Tiempo , Triyodotironina , Pérdida de Peso
7.
Metabolism ; 144: 155556, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37121307

RESUMEN

BACKGROUND: Kiss1 neurons in the hypothalamic arcuate-nucleus (ARC) play key roles in the control of GnRH pulsatility and fertility. A fraction of ARC Kiss1 neurons, termed KNDy, co-express neurokinin B (NKB; encoded by Tac2). Yet, NKB- and Kiss1-only neurons are also found in the ARC, while a second major Kiss1-neuronal population is present in the rostral hypothalamus. The specific contribution of different Kiss1 neuron sub-sets and kisspeptins originating from them to the control of reproduction and eventually other bodily functions remains to be fully determined. METHODS: To tease apart the physiological roles of KNDy-born kisspeptins, conditional ablation of Kiss1 in Tac2-expressing cells was implemented in vivo. To this end, mice with Tac2 cell-specific Kiss1 KO (TaKKO) were generated and subjected to extensive reproductive and metabolic characterization. RESULTS: TaKKO mice displayed reduced ARC kisspeptin content and Kiss1 expression, with greater suppression in females, which was detectable at infantile-pubertal age. In contrast, Tac2/NKB levels were fully preserved. Despite the drop of ARC Kiss1/kisspeptin, pubertal timing was normal in TaKKO mice of both sexes. However, young-adult TaKKO females displayed disturbed LH pulsatility and sex steroid levels, with suppressed basal LH and pre-ovulatory LH surges, early-onset subfertility and premature ovarian insufficiency. Conversely, testicular histology and fertility were grossly conserved in TaKKO males. Ablation of Kiss1 in Tac2-cells led also to sex-dependent alterations in body composition, glucose homeostasis, especially in males, and locomotor activity, specifically in females. CONCLUSIONS: Our data document that KNDy-born kisspeptins are dispensable/compensable for puberty in both sexes, but required for maintenance of female gonadotropin pulsatility and fertility, as well as for adult metabolic homeostasis. SIGNIFICANCE STATEMENT: Neurons in the hypothalamic arcuate nucleus (ARC) co-expressing kisspeptins and NKB, named KNDy, have been recently suggested to play a key role in pulsatile secretion of gonadotropins, and hence reproduction. However, the relative contribution of this Kiss1 neuronal-subset, vs. ARC Kiss1-only and NKB-only neurons, as well as other Kiss1 neuronal populations, has not been assessed in physiological settings. We report here findings in a novel mouse-model with elimination of KNDy-born kisspeptins, without altering other kisspeptin compartments. Our data highlights the heterogeneity of ARC Kiss1 populations and document that, while dispensable/compensable for puberty, KNDy-born kisspeptins are required for proper gonadotropin pulsatility and fertility, specifically in females, and adult metabolic homeostasis. Characterization of this functional diversity is especially relevant, considering the potential of kisspeptin-based therapies for management of human reproductive disorders.


Asunto(s)
Gonadotropinas , Kisspeptinas , Masculino , Femenino , Ratones , Humanos , Animales , Kisspeptinas/genética , Neuronas/metabolismo , Pubertad , Hormona Liberadora de Gonadotropina/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Fertilidad
8.
Pharmaceutics ; 15(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36986669

RESUMEN

The anti-inflammatory action of fucoidans is well known, based on both in vitro and some in vivo studies. The other biological properties of these compounds, their lack of toxicity, and the possibility of obtaining them from a widely distributed and renewable source, makes them attractive novel bioactives. However, fucoidans' heterogeneity and variability in composition, structure, and properties depending on seaweed species, biotic and abiotic factors and processing conditions, especially during extraction and purification stages, make it difficult for standardization. A review of the available technologies, including those based on intensification strategies, and their influence on fucoidan composition, structure, and anti-inflammatory potential of crude extracts and fractions is presented.

9.
Metabolism ; 129: 155141, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35074314

RESUMEN

BACKGROUND: Perturbations in the timing of puberty, with potential adverse consequences in later health, are increasingly common. The underlying neurohormonal mechanisms are unfolded, but nutritional alterations are key contributors. Efforts to unveil the basis of normal puberty and its metabolic control have focused on mechanisms controlling expression of Kiss1, the gene encoding the puberty-activating neuropeptide, kisspeptin. However, other regulatory phenomena remain ill-defined. Here, we address the putative role of the G protein-coupled-receptor kinase-2, GRK2, in GnRH neurons, as modulator of pubertal timing via repression of the actions of kisspeptin, in normal maturation and conditions of nutritional deficiency. METHODS: Hypothalamic RNA and protein expression analyses were conducted in maturing female rats. Pharmacological studies involved central administration of GRK2 inhibitor, ßARK1-I, and assessment of gonadotropin responses to kisspeptin or phenotypic and hormonal markers of puberty, under normal nutrition or early subnutrition in female rats. In addition, a mouse line with selective ablation of GRK2 in GnRH neurons, aka G-GRKO, was generated, in which hormonal responses to kisspeptin and puberty onset were monitored, in normal conditions and after nutritional deprivation. RESULTS: Hypothalamic GRK2 expression increased along postnatal maturation in female rats, especially in the preoptic area, where most GnRH neurons reside, but decreased during the juvenile-to-pubertal transition. Blockade of GRK2 activity enhanced Ca+2 responses to kisspeptin in vitro, while central inhibition of GRK2 in vivo augmented gonadotropin responses to kisspeptin and advanced puberty onset. Postnatal undernutrition increased hypothalamic GRK2 expression and delayed puberty onset, the latter being partially reversed by central GRK2 inhibition. Conditional ablation of GRK2 in GnRH neurons enhanced gonadotropin responses to kisspeptin, accelerated puberty onset, and increased LH pulse frequency, while partially prevented the negative impact of subnutrition on pubertal timing and LH pulsatility in mice. CONCLUSIONS: Our data disclose a novel pathway whereby GRK2 negatively regulates kisspeptin actions in GnRH neurons, as major regulatory mechanism for tuning pubertal timing in nutritionally-compromised conditions.


Asunto(s)
Kisspeptinas , Desnutrición , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Desnutrición/metabolismo , Ratones , Neuronas/metabolismo , Ratas , Receptores de Kisspeptina-1/metabolismo , Maduración Sexual/fisiología
10.
Nat Commun ; 13(1): 4663, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945211

RESUMEN

Kiss1 neurons, producing kisspeptins, are essential for puberty and fertility, but their molecular regulatory mechanisms remain unfolded. Here, we report that congenital ablation of the microRNA-synthesizing enzyme, Dicer, in Kiss1 cells, causes late-onset hypogonadotropic hypogonadism in both sexes, but is compatible with pubertal initiation and preserved Kiss1 neuronal populations at the infantile/juvenile period. Yet, failure to complete puberty and attain fertility is observed only in females. Kiss1-specific ablation of Dicer evokes disparate changes of Kiss1-cell numbers and Kiss1/kisspeptin expression between hypothalamic subpopulations during the pubertal-transition, with a predominant decline in arcuate-nucleus Kiss1 levels, linked to enhanced expression of its repressors, Mkrn3, Cbx7 and Eap1. Our data unveil that miRNA-biosynthesis in Kiss1 neurons is essential for pubertal completion and fertility, especially in females, but dispensable for initial reproductive maturation and neuronal survival in both sexes. Our results disclose a predominant miRNA-mediated inhibitory program of repressive signals that is key for precise regulation of Kiss1 expression and, thereby, reproductive function.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Kisspeptinas , Ribonucleasa III/metabolismo , Animales , Femenino , Fertilidad , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Ribonucleasa III/genética , Maduración Sexual/genética
11.
FASEB J ; 24(8): 2670-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20335227

RESUMEN

The orexigenic effect of ghrelin is mediated by neuropeptide Y (NPY) and agouti-related protein (AgRP) in the hypothalamic arcuate nucleus (ARC). Recent evidence also indicates that ghrelin promotes feeding through a mechanism involving activation of hypothalamic AMP-activated protein kinase (AMPK) and inactivation of acetyl-CoA carboxylase and fatty acid synthase (FAS). This results in decreased hypothalamic levels of malonyl-CoA, increased carnitine palmitoyltransferase 1 (CPT1) activity, and mitochondrial production of reactive oxygen species. We evaluated whether these molecular events are part of a unique signaling cascade or whether they represent alternative pathways mediating the orexigenic effect of ghrelin. Moreover, we examined the gender dependency of these mechanisms, because recent evidence has proposed that ghrelin orexigenic effect is reduced in female rats. We studied in both genders the effect of ghrelin on the expression of AgRP and NPY, as well as their transcription factors: cAMP response-element binding protein (CREB and its phosphorylated form, pCREB), forkhead box O1 (FoxO1 and its phosphorylated form, pFoxO1), and brain-specific homeobox transcription factor (BSX). In addition, to establish a mechanistic link between ghrelin, fatty acid metabolism, and neuropeptides, we evaluated the effect of ghrelin after blockage of hypothalamic fatty acid beta oxidation, by using the CPT1 inhibitor etomoxir. Ghrelin-induced changes in the AMPK-CPT1 pathway are associated with increased levels of AgRP and NPY mRNA expression through modulation of BSX, pCREB, and FoxO1, as well as decreased expression of endoplasmic reticulum (ER) stress markers in a gender-independent manner. In addition, blockage of hypothalamic fatty acid beta oxidation prevents the ghrelin-promoting action on AgRP and NPY mRNA expression, also in a gender-independent manner. Notably, this effect is associated with decreased BSX expression and reduced food intake. Overall, our data suggest that BSX integrates changes in neuronal metabolic status with ARC-derived neuropeptides in a gender-independent manner.


Asunto(s)
Ácidos Grasos/metabolismo , Ghrelina/farmacología , Proteínas de Homeodominio/genética , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/efectos de los fármacos , Factores de Transcripción/metabolismo , Proteína Relacionada con Agouti/efectos de los fármacos , Proteína Relacionada con Agouti/genética , Animales , Ingestión de Alimentos , Femenino , Regulación de la Expresión Génica , Masculino , Neuropéptido Y/efectos de los fármacos , Neuropéptido Y/genética , Neuropéptidos/genética , Ratas , Factores Sexuales , Factores de Transcripción/genética
12.
Neuroendocrinology ; 94(1): 1-11, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21576929

RESUMEN

The hypothalamus plays a crucial role in the regulation of food intake and energy expenditure. One of the main regulatory factors within the hypothalamus is AMP-activated protein kinase (AMPK), which is involved in a large number of biological actions including the modulation of energy balance. Leptin and ghrelin-induced changes in hypothalamic AMPK lead to important alterations in hypothalamic fatty acid metabolism. Furthermore, it is well known that the hypothalamus controls peripheral lipid metabolism through the sympathetic nervous system, and those actions are independent of food intake. In this short review, we highlight the main molecular pathways triggered by leptin and ghrelin altering both central and peripheral lipid metabolism and, therefore, controlling feeding behavior and energy expenditure.


Asunto(s)
Hipotálamo/fisiología , Metabolismo de los Lípidos/fisiología , Animales , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Ghrelina/fisiología , Humanos , Leptina/fisiología , Melanocortinas/fisiología
13.
Carbohydr Polym ; 258: 117692, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33593565

RESUMEN

Osteoarthritis (OA) is the most prevalent articular chronic disease. Although, to date there is no cure for OA. Fucoidans, one of the main therapeutic components of brown algae, have emerged as promising molecules in OA treatment. However, the variability between fucoidans makes difficult the pursuit of the most suitable candidate to target specific pathological processes. By an in vitro experimental approach in chondrocytes and fibroblast-like synoviocytes, we observed that chemical composition of fucoidan, and specifically the phlorotannin content and the ratio sulfate:fucose, seems critically relevant for its biological activity. Nonetheless, other factors like concentration and molecular weight of the fucoidan may influence on its beneficial effects. Additionally, a cell-type dependent response was also detected. Thus, our results shed light on the potential use of fucoidans as natural molecules in the treatment of key pathological processes in the joint that favor the development of rheumatic disorders as OA.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Osteoartritis/tratamiento farmacológico , Polisacáridos/química , Sinoviocitos/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Antioxidantes/química , Apoptosis/efectos de los fármacos , Condrocitos/citología , Condrocitos/metabolismo , Femenino , Fibroblastos/metabolismo , Fucosa/química , Fucus , Humanos , Técnicas In Vitro , Macrocystis , Masculino , Potencial de la Membrana Mitocondrial , Persona de Mediana Edad , Oligosacáridos/química , Osteoartritis/metabolismo , Floroglucinol/química , Especies Reactivas de Oxígeno , Enfermedades Reumáticas/inmunología , Sulfatos/química , Sinoviocitos/citología , Undaria
14.
Eur J Endocrinol ; 185(5): 637-652, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34403358

RESUMEN

OBJECTIVE: Polycystic ovary syndrome (PCOS) is diagnosed based on the clinical signs, but its presentation is heterogeneous and potentially confounded by concurrent conditions, such as obesity and insulin resistance. miRNA have recently emerged as putative pathophysiological and diagnostic factors in PCOS. However, no reliable miRNA-based method for molecular diagnosis of PCOS has been reported. The aim of this study was to develop a tool for accurate diagnosis of PCOS by targeted miRNA profiling of plasma samples, defined on the basis of unbiased biomarker-finding analyses and biostatistical tools. METHODS: A case-control PCOS cohort was cross-sectionally studied, including 170 women classified into four groups: non-PCOS/lean, non-PCOS/obese, PCOS/lean, and PCOS/obese women. High-throughput miRNA analyses were performed in plasma, using NanoString technology and a 800 human miRNA panel, followed by targeted quantitative real-timePCR validation. Statistics were applied to define optimal normalization methods, identify deregulated biomarker miRNAs, and build classification algorithms, considering PCOS and obesity as major categories. RESULTS: The geometric mean of circulating hsa-miR-103a-3p, hsa-miR-125a-5p, and hsa-miR-1976, selected among 125 unchanged miRNAs, was defined as optimal reference for internal normalization (named mR3-method). Ten miRNAs were identified and validated after mR3-normalization as differentially expressed across the groups. Multinomial least absolute shrinkage and selection operator regression and decision-tree models were built to reliably discriminate PCOS vs non-PCOS, either in obese or non-obese women, using subsets of these miRNAs as performers. CONCLUSIONS: We define herein a robust method for molecular classification of PCOS based on unbiased identification of miRNA biomarkers and decision-tree protocols. This method allows not only reliable diagnosis of non-obese women with PCOS but also discrimination between PCOS and obesity. CAPSULE: We define a novel protocol, based on plasma miRNA profiling, for molecular diagnosis of PCOS. This tool not only allows proper discrimination of the condition in non-obese women but also permits distinction between PCOS and obesity, which often display overlapping clinical presentations.


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/sangre , MicroARNs/genética , Obesidad/etiología , Obesidad/genética , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/genética , Adolescente , Adulto , Algoritmos , Biomarcadores , Estudios de Casos y Controles , Estudios de Cohortes , Biología Computacional , Estudios Transversales , Árboles de Decisión , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Reproducibilidad de los Resultados , Adulto Joven
15.
J Am Chem Soc ; 132(20): 6947-54, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20218576

RESUMEN

Silver atomic quantum clusters (AgAQCs), with two or three silver atoms, show electrocatalytic activities that are not found in nanoparticles or in bulk silver. AgAQCs supported on glassy carbon electrodes oxidize ethanol and other alcohols in macroscopic electrochemical cells in acidic and basic media. This electrocatalysis occurs at very low potentials (from approximately +200 mV vs RHE), at physiological pH, and at ethanol concentrations that are found in alcoholic patients. When mammalian cells are co-exposed to ethanol and AgAQCs, alcohol-induced alterations such as rounded cell morphology, disorganization of the actin cytoskeleton, and activation of caspase-3 are all prevented. This cytoprotective effect of AgAQCs is also observed in primary cultures of newborn rat astrocytes exposed to ethanol, which is a cellular model of fetal alcohol syndrome. AgAQCs oxidize ethanol from the culture medium only when ethanol and AgAQCs are added to cells simultaneously, which suggests that cytoprotection by AgAQCs is provided by the ethanol electro-oxidation mediated by the combined action of AgAQCs and cells. Overall, these findings not only show that AgAQCs are efficient electrocatalysts at physiological pH and prevent ethanol toxicity in cultured mammalian cells, but also suggest that AgAQCs could be used to modify redox reactions and in this way promote or inhibit biological reactions.


Asunto(s)
Etanol/química , Etanol/toxicidad , Nanopartículas del Metal/química , Plata/química , Animales , Astrocitos/efectos de los fármacos , Carbono/química , Catálisis , Células Cultivadas , Medios de Cultivo/química , Electroquímica , Electrodos , Vidrio/química , Hidrógeno/química , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Ratas
16.
Front Psychol ; 11: 573728, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324287

RESUMEN

Adolescent-to-Parent Violence (APV) or Child-to-Parent Violence (CPV) is a specific form of violence that has remained inconspicuous until recently, but is becoming a mounting social issue and is increasingly the focus of scientific research. Of the variables related to APV, the study assessed the characteristics of the family system and its relationship to the psychosocial adjustment of adolescents, an aspect scarcely examined in the literature. Thus, a field study was performed on a community sample of 210 adolescents aged 12-17 years (51.4% girls) who were assessed on measurements of APV, parenting (parental socialization), victimization, and psychological adjustment (personal, family, and school). The results revealed higher rates of psychological APV, and no gender effects in violence exercised against either parent. The adolescents involved in APV exhibited a greater psychological maladjustment in the different areas under analysis. Moreover, adolescents engaging in psychological APV reported a parental socialization style characterized by severe strictness and supervision in comparison to non-aggressors not implicated in psychological APV. Finally, adolescents exercising APV who were victimized by their parents showed more psychological, personal, and school maladjustment. These results have implications for needs analysis and the planning of community prevention strategies.

17.
Cells ; 9(9)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32839401

RESUMEN

GH (growth hormone) secretion/action is modulated by alterations in energy homeostasis, such as malnutrition and obesity. Recent data have uncovered the mechanism by which hypothalamic neurons sense nutrient bioavailability, with a relevant contribution of AMPK (AMP-activated protein kinase) and mTOR (mammalian Target of Rapamycin), as sensors of cellular energy status. However, whether central AMPK-mediated lipid signaling and mTOR participate in the regulation of pituitary GH secretion remains unexplored. We provide herein evidence for the involvement of hypothalamic AMPK signaling, but not hypothalamic lipid metabolism or CPT-1 (carnitine palmitoyltransferase I) activity, in the regulation of GH stimulatory responses to the two major elicitors of GH release in vivo, namely GHRH (growth hormone-releasing hormone) and ghrelin. This effect appeared to be GH-specific, as blocking of hypothalamic AMPK failed to influence GnRH (gonadotropin-releasing hormone)-induced LH (luteinizing hormone) secretion. Additionally, central mTOR inactivation did not alter GH responses to GHRH or ghrelin, nor this blockade affected LH responses to GnRH in vivo. In sum, we document here for the first time the indispensable and specific role of preserved central AMPK, but not mTOR, signaling, through a non-canonical lipid signaling pathway, for proper GH responses to GHRH and ghrelin in vivo.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ghrelina/metabolismo , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Animales , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal
18.
Biochem Pharmacol ; 171: 113693, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31706843

RESUMEN

Medicinal cannabis has remarkable therapeutic potential, but its clinical use is limited by the psychotropic activity of Δ9-tetrahydrocannabinol (Δ9-THC). However, the biological profile of the carboxylated, non-narcotic native precursor of Δ9-THC, the Δ9-THC acid A (Δ9-THCA-A), remains largely unexplored. Here we present evidence that Δ9-THCA-A is a partial and selective PPARγ modulator, endowed with lower adipogenic activity than the full PPARγ agonist rosiglitazone (RGZ) and enhanced osteoblastogenic effects in hMSC. Docking and in vitro functional assays indicated that Δ9-THCA-A binds to and activates PPARγ by acting at both the canonical and the alternative sites of the ligand-binding domain. Transcriptomic signatures in iWAT from mice treated with Δ9-THCA-A confirmed its mode of action through PPARγ. Administration of Δ9-THCA-A in a mouse model of HFD-induced obesity significantly reduced fat mass and body weight gain, markedly ameliorating glucose intolerance and insulin resistance, and largely preventing liver steatosis, adipogenesis and macrophage infiltration in fat tissues. Additionally, immunohistochemistry, transcriptomic, and plasma biomarker analyses showed that treatment with Δ9-THCA-A caused browning of iWAT and displayed potent anti-inflammatory actions in HFD mice. Our data validate the potential of Δ9-THCA-A as a low adipogenic PPARγ agonist, capable of substantially improving the symptoms of obesity-associated metabolic syndrome and inflammation.


Asunto(s)
Adiposidad/efectos de los fármacos , Dronabinol/análogos & derivados , Enfermedades Metabólicas/prevención & control , Obesidad/prevención & control , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Dronabinol/metabolismo , Dronabinol/farmacología , Hígado Graso/etiología , Hígado Graso/prevención & control , Células HEK293 , Humanos , Masculino , Enfermedades Metabólicas/etiología , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , PPAR gamma/agonistas , PPAR gamma/metabolismo , Rosiglitazona/metabolismo , Rosiglitazona/farmacología
19.
Psicothema ; 31(3): 284-291, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31292043

RESUMEN

BACKGROUND: Parental separation is a stressful experience that can lead to parents suffering mental health problems (MHPs). Parental separation education programs for coping with post-separation adjustment have proven to be effective in reducing conflict and improving co-parenting. However, the effects of these programs on MHPs have not been assessed. A field study was carried out to assess the impact of a parental separation education program on parental MHPs. METHOD: A total of 116 separated parents who completed the program "Parental separation, not family breakdown" completed the Brief Symptom Inventory (BSI) pre- and post-intervention. RESULTS: Separated parents had significantly higher pre-intervention scores on the nine symptom dimensions and the global indexes of distress in comparison to the normative population. The intervention yielded a significant improvement (i.e., reduction of clinical symptoms) in all MHPs, ranging from 19% in phobic anxiety to 36% in depression and general anxiety; and in the global indexes of distress (36% in the global severity index; 28% in the positive symptom distress index; and 33% in the positive symptom total). Approximately 45% of parents significantly improved through the intervention. CONCLUSIONS: The implications of the outcomes of the separation and intervention in parents' MHPs and children wellbeing are discussed.


Asunto(s)
Adaptación Psicológica , Estado Civil , Trastornos Mentales/diagnóstico , Padres/educación , Adulto , Niño , Custodia del Niño/estadística & datos numéricos , Femenino , Humanos , Masculino , Trastornos Mentales/prevención & control , Trastornos Mentales/psicología , Salud Mental/educación , Persona de Mediana Edad , Padres/psicología , Evaluación de Programas y Proyectos de Salud , Factores Sexuales , Estrés Psicológico/diagnóstico , Estrés Psicológico/prevención & control , Estrés Psicológico/psicología , Adulto Joven
20.
Metabolism ; 98: 84-94, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31226351

RESUMEN

BACKGROUND: Kisspeptins, encoded by Kiss1, have emerged as essential regulators of puberty and reproduction by primarily acting on GnRH neurons, via their canonical receptor, Gpr54. Mounting, as yet fragmentary, evidence strongly suggests that kisspeptin signaling may also participate in the control of key aspects of body energy and metabolic homeostasis. However, characterization of such metabolic dimension of kisspeptins remains uncomplete, without an unambiguous discrimination between the primary metabolic actions of kisspeptins vs. those derived from their ability to stimulate the secretion of gonadal hormones, which have distinct metabolic actions on their own. In this work, we aimed to tease apart primary vs. secondary effects of kisspeptins in the control of key aspects of metabolic homeostasis using genetic models of impaired kisspeptin signaling and/or gonadal hormone status. METHODS: Body weight (BW) gain and composition, food intake and key metabolic parameters, including glucose tolerance, were comparatively analyzed, in lean and obesogenic conditions, in mice lacking kisspeptin signaling due to global inactivation of Gpr54 (displaying profound hypogonadism; Gpr54-/-) vs. Gpr54 null mice with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54-/-Tg), where kisspeptin signaling elsewhere than in GnRH neurons is ablated but gonadal function is preserved. RESULTS: In male mice, global elimination of kisspeptin signaling resulted in decreased BW, feeding suppression and increased adiposity, without overt changes in glucose tolerance, whereas Gpr54-/- female mice displayed enhanced BW gain at adulthood, increased adiposity and perturbed glucose tolerance, despite reduced food intake. Gpr54-/-Tg rescued mice showed altered postnatal BW gain in males and mildly perturbed glucose tolerance in females, with intermediate phenotypes between control and global KO animals. Yet, body composition and leptin levels were similar to controls in gonadal-rescued mice. Exposure to obesogenic insults, such as high fat diet (HFD), resulted in exaggerated BW gain and adiposity in global Gpr54-/- mice of both sexes, and worsening of glucose tolerance, especially in females. Yet, while rescued Gpr54-/-Tg males displayed intermediate BW gain and feeding profiles and impaired glucose tolerance, rescued Gpr54-/-Tg females behaved as controls, except for a modest deterioration of glucose tolerance after ovariectomy. CONCLUSION: Our data support a global role of kisspeptin signaling in the control of body weight and metabolic homeostasis, with a dominant contribution of gonadal hormone-dependent actions. However, our results document also discernible primary effects of kisspeptin signaling in the regulation of body weight gain, feeding and responses to obesogenic insults, which occur in a sexually-dimorphic manner. SUMMARY OF TRANSLATIONAL RELEVANCE: Kisspeptins, master regulators of reproduction, may also participate in the control of key aspects of body energy and metabolic homeostasis; yet, the nature of such metabolic actions remains debatable, due in part to the fact that kisspeptins modulate gonadal hormones, which have metabolic actions on their own. By comparing the metabolic profiles of two mouse models with genetic inactivation of kisspeptin signaling but different gonadal status (hypogonadal vs. preserved gonadal function), we provide herein a systematic dissection of gonadal-dependent vs. -independent metabolic actions of kisspeptins. Our data support a global role of kisspeptin signaling in the control of body weight and metabolic homeostasis, with a dominant contribution of gonadal hormone-dependent actions. However, our results document also discernible primary effects of kisspeptin signaling in the regulation of body weight gain, feeding and responses to obesogenic insults, which occur in a sexually-dimorphic manner. These data pave the way for future analyses addressing the eventual contribution of altered kisspeptin signaling in the development of metabolic alterations, especially in conditions linked to reproductive dysfunction.


Asunto(s)
Peso Corporal/fisiología , Hormonas Gonadales/fisiología , Homeostasis/fisiología , Kisspeptinas/fisiología , Transducción de Señal/fisiología , Animales , Dieta , Ingestión de Alimentos , Femenino , Intolerancia a la Glucosa/genética , Masculino , Ratones , Ratones Noqueados , Obesidad/genética , Ovariectomía , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Aumento de Peso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA