Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Methods ; 17(4): 442-449, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32161395

RESUMEN

Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network (CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. By using VesSAP, we analyzed the vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains at the micrometer scale after registering them to the Allen mouse brain atlas. We report evidence of secondary intracranial collateral vascularization in CD1 mice and find reduced vascularization of the brainstem in comparison to the cerebrum. Thus, VesSAP enables unbiased and scalable quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into the vascular function of the brain.


Asunto(s)
Encéfalo/irrigación sanguínea , Aprendizaje Automático , Animales , Imagenología Tridimensional , Ratones
2.
Amino Acids ; 52(11-12): 1529-1543, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33211194

RESUMEN

Synaptosomes are frequently used research objects in neurobiology studies focusing on synaptic transmission as they mimic several aspects of the physiological synaptic functions. They contain the whole apparatus for neurotransmission, the presynaptic nerve ending with synaptic vesicles, synaptic mitochondria and often a segment of the postsynaptic membrane along with the postsynaptic density is attached to its outer surface. As being artificial functional organelles, synaptosomes are viable for several hours, retain their activity, membrane potential, and capable to store, release, and reuptake neurotransmitters. Synaptosomes are ideal subjects for proteomic analysis. The recently available separation and protein detection techniques can cope with the reduced complexity of the organelle and enable the simultaneous qualitative and quantitative analysis of thousands of proteins shaping the structural and functional characteristics of the synapse. Synaptosomes are formed during the homogenization of nervous tissue in the isoosmotic milieu and can be isolated from the homogenate by various approaches. Each enrichment method has its own benefits and drawbacks and there is not a single method that is optimal for all research purposes. For a proper proteomic experiment, it is desirable to preserve the native synaptic structure during the isolation procedure and keep the degree of contamination from other organelles or cell types as low as possible. In this article, we examined five synaptosome isolation methods from a proteomic point of view by the means of electron microscopy, Western blot, and liquid chromatography-mass spectrometry to compare their efficiency in the isolation of synaptosomes and depletion of contaminating subcellular structures. In our study, the different isolation procedures led to a largely overlapping pool of proteins with a fairly similar distribution of presynaptic, active zone, synaptic vesicle, and postsynaptic proteins; however, discrete differences were noticeable in individual postsynaptic proteins and in the number of identified transmembrane proteins. Much pronounced variance was observed in the degree of contamination with mitochondrial and glial structures. Therefore, we suggest that in selecting the appropriate isolation method for any neuroproteomics experiment carried out on synaptosomes, the degree and sort/source of contamination should be considered as a primary aspect.


Asunto(s)
Proteínas de la Membrana/aislamiento & purificación , Proteómica , Sinapsis/metabolismo , Sinaptosomas/metabolismo , Animales , Encéfalo/metabolismo , Cromatografía Liquida , Humanos , Espectrometría de Masas , Potenciales de la Membrana/genética , Proteínas de la Membrana/genética , Microscopía Electrónica , Mitocondrias/genética , Mitocondrias/metabolismo , Terminales Presinápticos/metabolismo , Ratas , Sinapsis/genética , Transmisión Sináptica/genética
3.
Neurochem Res ; 44(10): 2314-2324, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30847857

RESUMEN

The behavior of female rats changes profoundly as they become mothers. The brain region that plays a central role in this regulation is the preoptic area, and lesions in this area eliminates maternal behaviors in rodents. The molecular background of the behavioral changes has not been established yet; therefore, in the present study, we applied proteomics to compare protein level changes associated with maternal care in the rat preoptic area. Using 2-dimensional fluorescence gel electrophoresis followed by identification of altered spots with mass spectrometry, 12 proteins were found to be significantly increased, and 6 proteins showed a significantly reduced level in mothers. These results show some similarities with a previous proteomics study of the maternal medial prefrontal cortex and genomics approaches applied to the preoptic area. Gene ontological analysis suggested that most altered proteins are involved in glucose metabolism and neuroplasticity. These proteins may support the maintenance of increased neuronal activity in the preoptic area, and morphological changes in preoptic neuronal circuits are known to take place in mothers. An increase in the level of alpha-crystallin B chain (Cryab) was confirmed by Western blotting. This small heat shock protein may also contribute to maintaining the increased activity of preoptic neurons by stabilizing protein structures. Common regulator and target analysis of the altered proteins suggested a role of prolactin in the molecular changes in the preoptic area. These results first identified the protein level changes in the maternal preoptic area. The altered proteins contribute to the maintenance of maternal behaviors and may also be relevant to postpartum depression, which can occur as a molecular level maladaptation to motherhood.


Asunto(s)
Conducta Materna/fisiología , Corteza Prefrontal/fisiopatología , Área Preóptica/metabolismo , Proteómica , Animales , Conducta Animal/fisiología , Electroforesis en Gel Bidimensional/métodos , Femenino , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Área Preóptica/fisiopatología , Proteómica/métodos , Ratas
4.
Mol Cell Neurosci ; 79: 64-80, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28087334

RESUMEN

Acute total sleep deprivation (SD) impairs memory consolidation, attention, working memory and perception. Structural, electrophysiological and molecular experimental approaches provided evidences for the involvement of sleep in synaptic functions. Despite the wide scientific interest on the effects of sleep on the synapse, there is a lack of systematic investigation of sleep-related changes in the synaptic proteome. We isolated parietal cortical and thalamic synaptosomes of rats after 8h of total SD by gentle handling and 16h after the end of deprivation to investigate the short- and longer-term effects of SD on the synaptic proteome, respectively. The SD efficiency was verified by electrophysiology. Protein abundance alterations of the synaptosomes were analyzed by fluorescent two-dimensional differential gel electrophoresis and by tandem mass spectrometry. As several altered proteins were found to be involved in synaptic strength regulation, our data can support the synaptic homeostasis hypothesis function of sleep and highlight the long-term influence of SD after the recovery sleep period, mostly on cortical synapses. Furthermore, the large-scale and brain area-specific protein network change in the synapses may support both ideas of sleep-related synaptogenesis and molecular maintenance and reorganization in normal rat brain.


Asunto(s)
Corteza Cerebral/metabolismo , Proteoma/metabolismo , Privación de Sueño/metabolismo , Sinapsis/metabolismo , Tálamo/metabolismo , Animales , Corteza Cerebral/ultraestructura , Masculino , Proteoma/genética , Ratas , Ratas Sprague-Dawley , Privación de Sueño/patología , Sinapsis/ultraestructura , Tálamo/ultraestructura
5.
Brain Behav Immun ; 56: 289-309, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27058163

RESUMEN

An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which might underlie the pathological cortical functions that are characteristic of schizophrenia and ASD.


Asunto(s)
Corteza Prefrontal/metabolismo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteoma/metabolismo , Sinapsis/metabolismo , Sinaptosomas/metabolismo , Animales , Trastorno del Espectro Autista/etiología , Modelos Animales de Enfermedad , Femenino , Lipopolisacáridos/farmacología , Masculino , Embarazo , Proteómica/métodos , Ratas , Ratas Wistar , Esquizofrenia/etiología , Sinapsis/patología , Sinaptosomas/patología
6.
Brain Behav Immun ; 35: 86-95, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24021561

RESUMEN

Peripheral injection of bacterial lipopolysaccharide (LPS) facilitates 8-10Hz spike-wave discharges (SWD) characterizing absence epilepsy in WAG/Rij rats. It is unknown however, whether peripherally administered LPS is able to alter the generator areas of epileptic activity at the molecular level. We injected 1mg/kg dose of LPS intraperitoneally into WAG/Rij rats, recorded the body temperature and EEG, and examined the protein expression changes of the proteome 12h after injection in the fronto-parietal cortex and thalamus. We used fluorescent two-dimensional differential gel electrophoresis to investigate the expression profile. We found 16 differentially expressed proteins in the fronto-parietal cortex and 35 proteins in the thalamus. It is known that SWD genesis correlates with the transitional state of sleep-wake cycle thus we performed meta-analysis of the altered proteins in relation to inflammation, epilepsy as well as sleep. The analysis revealed that all categories are highly represented by the altered proteins and these protein-sets have considerable overlap. Protein network modeling suggested that the alterations in the proteome were largely induced by the immune response, which invokes the NFkB signaling pathway. The proteomics and computational analysis verified the known functional interplay between inflammation, epilepsy and sleep and highlighted proteins that are involved in their common synaptic mechanisms. Our physiological findings support the phenomenon that high dose of peripheral LPS injection increases SWD-number, modifies its duration as well as the sleep-wake stages and decreases body temperature.


Asunto(s)
Encéfalo/metabolismo , Epilepsia Tipo Ausencia/metabolismo , Inflamación/metabolismo , Proteoma , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia Tipo Ausencia/fisiopatología , Lipopolisacáridos/toxicidad , Proteómica , Ratas , Ratas Endogámicas , Ratas Wistar , Transducción de Señal
7.
Nat Aging ; 4(4): 595-612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519806

RESUMEN

Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.


Asunto(s)
Células Endoteliales , Proteómica , Ratones , Animales , Células Endoteliales/metabolismo , Proteómica/métodos , Encéfalo/metabolismo , Endotelio/metabolismo , Apolipoproteínas E/metabolismo
8.
Nat Commun ; 15(1): 5944, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013852

RESUMEN

Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.


Asunto(s)
Serina Peptidasa A1 que Requiere Temperaturas Altas , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Animales , Humanos , Ratones , Conformación Proteica , Multimerización de Proteína , Células HEK293 , Encéfalo/metabolismo , Encéfalo/patología , Mutación , Mutación con Pérdida de Función
9.
Mol Neurobiol ; 59(2): 1301-1319, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34988919

RESUMEN

Sleep deprivation (SD) is commonplace in the modern way of life and has a substantial social, medical, and human cost. Sleep deprivation induces cognitive impairment such as loss of executive attention, working memory decline, poor emotion regulation, increased reaction times, and higher cognitive functions are particularly vulnerable to sleep loss. Furthermore, SD is associated with obesity, diabetes, cardiovascular diseases, cancer, and a vast majority of psychiatric and neurodegenerative disorders are accompanied by sleep disturbances. Despite the widespread scientific interest in the effect of sleep loss on synaptic function, there is a lack of investigation focusing on synaptic transmission on the proteome level. In the present study, we report the effects of SD and recovery period (RP) on the cortical synaptic proteome in rats. Synaptosomes were isolated after 8 h of SD performed by gentle handling and after 16 h of RP. The purity of synaptosome fraction was validated with western blot and electron microscopy, and the protein abundance alterations were analyzed by mass spectrometry. We observed that SD and RP have a wide impact on neurotransmitter-related proteins at both the presynaptic and postsynaptic membranes. The abundance of synaptic proteins has changed to a greater extent in consequence of SD than during RP: we identified 78 proteins with altered abundance after SD and 39 proteins after the course of RP. Levels of most of the altered proteins were upregulated during SD, while RP showed the opposite tendency, and three proteins (Gabbr1, Anks1b, and Decr1) showed abundance changes with opposite direction after SD and RP. The functional cluster analysis revealed that a majority of the altered proteins is related to signal transduction and regulation, synaptic transmission and synaptic assembly, protein and ion transport, and lipid and fatty acid metabolism, while the interaction network analysis revealed several connections between the significantly altered proteins and the molecular processes of synaptic plasticity or sleep. Our proteomic data implies suppression of SNARE-mediated synaptic vesicle exocytosis and impaired endocytic processes after sleep deprivation. Both SD and RP altered GABA neurotransmission and affected protein synthesis, several regulatory processes and signaling pathways, energy homeostatic processes, and metabolic pathways.


Asunto(s)
Proteoma , Privación de Sueño , Animales , Corteza Cerebral/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Ratas , Privación de Sueño/metabolismo , Sinapsis/metabolismo
10.
Mol Neurobiol ; 55(5): 4253-4266, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28620701

RESUMEN

Chronic cerebral hypoperfusion (CCH) evokes mild cognitive impairment (MCI) and contributes to the progression of vascular dementia and Alzheimer's disease (AD). How CCH induces these neurodegenerative processes that may spread along the synaptic network and whether they are detectable at the synaptic proteome level of the cerebral cortex remains to be established. In the present study, we report the synaptic protein changes in the cerebral cortex after stepwise bilateral common carotid artery occlusion (BCCAO) induced CCH in the rat. The occlusions were confirmed with magnetic resonance angiography 5 weeks after the surgery. Synaptosome fractions were prepared using sucrose gradient centrifugation from cerebral cortex dissected 7 weeks after the occlusion. The synaptic protein differences between the sham operated and CCH groups were analyzed with label-free nanoUHPLC-MS/MS. We identified 46 proteins showing altered abundance due to CCH. In particular, synaptic protein and lipid metabolism, as well as GABA shunt-related proteins showed increased while neurotransmission and synaptic assembly-related proteins showed decreased protein level changes in CCH rats. Protein network analysis of CCH-induced protein alterations suggested the importance of increased synaptic apolipoprotein E (APOE) level as a consequence of CCH. Therefore, the change in APOE level was confirmed with Western blotting. The identified synaptic protein changes would precede the onset of dementia-like symptoms in the CCH model, suggesting their importance in the development of vascular dementia.


Asunto(s)
Corteza Cerebral/metabolismo , Circulación Cerebrovascular , Proteoma/metabolismo , Sinapsis/metabolismo , Animales , Apolipoproteínas E/metabolismo , Corteza Cerebral/diagnóstico por imagen , Angiografía por Resonancia Magnética , Masculino , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Ratas Wistar , Reproducibilidad de los Resultados , Sinapsis/ultraestructura , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura
11.
Mol Neurobiol ; 55(10): 7839-7857, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29468564

RESUMEN

Intracellular ß-amyloid (Aß) accumulation is an early event in Alzheimer's disease (AD) progression. Recently, it has been uncovered that presenilins (PSs), the key components of the amyloid precursor protein (APP) processing and the ß-amyloid producing γ-secretase complex, are highly enriched in a special sub-compartment of the endoplasmic reticulum (ER) functionally connected to mitochondria, called mitochondria-associated ER membrane (MAM). A current hypothesis of pathogenesis of Alzheimer's diseases (AD) suggests that MAM is involved in the initial phase of AD. Since MAM supplies mitochondria with essential proteins, the increasing level of PSs and ß-amyloid could lead to metabolic dysfunction because of the impairment of ER-mitochondrion crosstalk. To reveal the early molecular changes of this subcellular compartment in AD development MAM fraction was isolated from the cerebral cortex of 3 months old APP/PS1 mouse model of AD and age-matched C57BL/6 control mice, then mass spectrometry-based quantitative proteome analysis was performed. The enrichment and purity of MAM preparations were validated with EM, LC-MS/MS and protein enrichment analysis. Label-free LC-MS/MS was used to reveal the differences between the proteome of the transgenic and control mice. We obtained 77 increased and 49 decreased protein level changes in the range of - 6.365 to + 2.988, which have mitochondrial, ER or ribosomal localization according to Gene Ontology database. The highest degree of difference between the two groups was shown by the ATP-binding cassette G1 (Abcg1) which plays a crucial role in cholesterol metabolism and suppresses Aß accumulation. Most of the other protein changes were associated with increased protein synthesis, endoplasmic-reticulum-associated protein degradation (ERAD), oxidative stress response, decreased mitochondrial protein transport and ATP production. The interaction network analysis revealed a strong relationship between the detected MAM protein changes and AD. Moreover, it explored several MAM proteins with hub position suggesting their importance in Aß induced early MAM dysregulation. Our identified MAM protein changes precede the onset of dementia-like symptoms in the APP/PS1 model, suggesting their importance in the development of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Membranas Mitocondriales/metabolismo , Presenilina-1/metabolismo , Proteoma/metabolismo , Animales , Biología Computacional , Modelos Animales de Enfermedad , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Biosíntesis de Proteínas , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Coloración y Etiquetado
12.
J Proteomics ; 153: 65-77, 2017 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-27233742

RESUMEN

Proteomic differences between rat dams and control mothers deprived of their pups immediately after delivery were investigated in the medial prefrontal cortex (mPFC). A 2-D DIGE minimal dye technique combined with LC-MS/MS identified 32 different proteins that showed significant changes in expression in the mPFC, of which, 25 were upregulated and 7 were downregulated in dams. The identity of one significantly increased protein, the small heat-shock protein alpha-crystallin B chain (Cryab), was confirmed via Western blot analysis. Alpha-crystallin B chain was distributed in scattered cells in the mPFC, as demonstrated by immunohistochemistry. Furthermore, it was found to be localized in parvalbumin-containing neurons using double labeling. The elevation of its mRNA level in rat dams was also demonstrated via RT-PCR. The functional classification of the altered proteins was conducted using the UniProt and Gene Ontology protein databases. The identified proteins predominantly participate in synaptic transport and plasticity, neuron development, oxidative stress and apoptosis, and cytoskeleton organization. A common regulator and target analysis of these proteins determined using the Elsevier Pathway Studio Platform suggests that protein level changes associated with pup nursing are driven by growth factors and cytokines, while the MAP kinase pathway was identified as a common target. A high proportion of the proteins that were found to be altered in the mPFC are associated with depression. BIOLOGICAL SIGNIFICANCE: The behavior and emotional state of females change robustly when they become mothers. The brain, which governs these changes, may also undergo molecular alterations in mothers. As no proteomics approaches have been applied regarding maternal changes in the brain, we addressed this issue in the mPFC as this brain area is the uppermost cortical center of maternal control and the associated mood changes. The high number of protein-level alterations found between mothers taking care of their litter and those without pups indicates that pup nursing is associated with cortical protein-level changes. Alterations in proteins participating in synaptic transport, plasticity and neuron development suggest neuroplastic changes in the maternal brain. In turn, the relatively high number of altered proteins in the mPFC associated with depression suggests that the physiological effects of the protein-level alterations in the maternal mPFC could promote the incidence of postpartum depression. Cryab, a protein confirmed to be increased during maternal behaviors, was selectively found in parvalbumin cells, which, as fast-spiking interneurons, are associated with depression. The function of Cryab should be further investigated to establish whether it can be used to identify drug targets for future drug development.


Asunto(s)
Privación Materna , Corteza Prefrontal/química , Proteoma/análisis , Animales , Conducta Animal , Química Encefálica , Cristalinas/análisis , Depresión/fisiopatología , Electroforesis en Gel Bidimensional , Femenino , Proteínas Asociadas a Microtúbulos/análisis , Proteómica/métodos , Ratas , Espectrometría de Masas en Tándem
13.
J Proteomics ; 153: 53-64, 2017 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-27371348

RESUMEN

Neonatal rodents chronically treated with the tricyclic antidepressant clomipramine show depression-like behavior, which persists throughout adulthood. Therefore, this animal model is suitable to investigate the pathomechanism of depression, which is still largely unknown at the molecular level beyond monoaminergic dysfunctions. Here, we describe protein level changes in the prefrontal cortex of neonatally clomipramine-treated adult rats correlating with behavioral abnormalities. Clomipramine was administered to rat pups twice daily between postnatal days 8-21, while controls received saline injections. Behavioral tests were performed on 3months old rats. The proteomic study was conducted using two-dimensional differential gel electrophoresis. We have identified 32 proteins by mass spectrometry analysis of the significantly altered protein spots. The changed proteins are related to several biological functions, such as inflammation, transcription, cell metabolism and cytoskeleton organization. Among the altered proteins, the level of macrophage migration inhibitory factor showed the largest alteration, which was confirmed with Western blot. Macrophage migration inhibitory factor showed widespread distribution and was predominantly expressed in astrocytes in the forebrain of rats which were described using immunohistochemistry. We conclude that neonatal clomipramine exposure induces sustained modification in the proteome, which may form the molecular basis of the observed depression-like behavior in adult rats. BIOLOGICAL SIGNIFICANCE: It is known that some of the psychiatric disorders, such as autism, depression or schizophrenia may be at least in part, developmental disorders. We hypothesized that clomipramine treatment in early stage of brain development, which is known to induce depression-like behavior in adult rats, results in pathological distortion in neuronal and glial network development, which can be reflected by the cellular proteome in adulthood. Thus, we performed an unbiased proteomics experiment in adult rats, which were neonatally administered with clomipramine to reveal protein level changes three months after treatment. Many of the identified changed proteins are previously associated with depressive symptoms, e.g., the macrophage migration inhibitory factor (MIF), the level of which showed the largest alteration among the identified proteins. Based on our data, we suggest that neonatal clomipramine treatment is a reliable model to study the developmental effect of psychoactive drugs applied in the sensitive early phase of brain development. Furthermore, our findings support the idea that the alteration of early development of the brain induced by antidepressant treatment could result in sustained pathological changes in the cellular phenotype in the prefrontal cortex leading to depression-like behavioral symptoms.


Asunto(s)
Clomipramina/efectos adversos , Depresión/inducido químicamente , Corteza Prefrontal/química , Proteoma/efectos de los fármacos , Animales , Animales Recién Nacidos , Clomipramina/administración & dosificación , Depresión/tratamiento farmacológico , Femenino , Oxidorreductasas Intramoleculares/análisis , Factores Inhibidores de la Migración de Macrófagos/análisis , Masculino , Espectrometría de Masas , Proteómica/métodos , Ratas , Electroforesis Bidimensional Diferencial en Gel
14.
J Proteomics ; 159: 54-66, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28286321

RESUMEN

To establish synaptic proteome changes associated with motherhood, we isolated synaptosome fractions from the hypothalamus of mother rats and non-maternal control females at the 11th postpartum day. Proteomic analysis by two-dimensional differential gel electrophoresis combined with mass spectrometric protein identification established 26 significant proteins, 7 increasing and 19 decreasing protein levels in the dams. The altered proteins are mainly involved in energy homeostasis, protein folding, and metabolic processes suggesting the involvement of these cellular processes in maternal adaptations. The decrease in a significantly altered protein, complement component 1q subcomponent-binding protein (C1qbp) was validated with Western blotting. Furthermore, immunohistochemistry showed its presence in hypothalamic fibers and terminals in agreement with its presence in synaptosomes. We also found the expression of C1qbp in different hypothalamic nuclei including the preoptic area and the paraventricular hypothalamic nucleus at the protein and at the mRNA level using immunohistochemistry and in situ hybridization histochemistry, respectively. Bioinformatical network analysis revealed that cytokines, growth factors, and protein kinases are common regulators, which indicates a complex regulation of the proteome change in mothers. The results suggest that maternal responsiveness is associated with synaptic proteins level changes in the hypothalamus, and that growth factors and cytokines may govern these alterations. BIOLOGICAL SIGNIFICANCE: The period of motherhood is accompanied with several behavioral, neuroendocrine, emotional and metabolic adaptations in the brain. Although it is established that various hypothalamic networks participate in the maternal adaptations of the rodent brain, our knowledge on the molecular background of these alterations remains seriously limited. In the present study, we first determined that the functional alterations of the maternal brain can be detected at the level of the synaptic proteome in the hypothalamus. Independent confirmation of synaptic localization, and also the established decrease in the level of C1qbp protein suggest the validity of the data. Common regulators of altered proteins belonging to the growth factor and cytokine family suggest that the synaptic adaptation is governed by these extracellular signals and future studies should focus on their specific roles. Our study was also the first to describe the expression pattern of C1qbp in the hypothalamus, a protein potentially involved in mitochondrial and neuroimmunological regulations of synaptic plasticity. Its presence in the preoptic area responsible for maternal behaviors and also in the paraventricular hypothalamic and arcuate nuclei regulating hormonal levels suggests that the same proteins may be involved in different aspects of maternal adaptations. The conclusions of the present work contribute to establishing the molecular alterations that determine different maternal adaptations in the brain. Since maternal changes are models of neuronal plasticity in all social interactions, the reported results can affect a wide field of molecular and behavioral neuroscience.


Asunto(s)
Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Periodo Posparto/metabolismo , Proteoma/biosíntesis , Animales , Femenino , Periodo Posparto/fisiología , Ratas , Ratas Wistar
15.
Mol Neurobiol ; 54(3): 2060-2078, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-26910821

RESUMEN

Alzheimer's disease (AD) is a multifactorial disease of wide clinical heterogenity. Overproduction of amyloid precursor protein (APP) and accumulation of ß-amyloid (Aß) and tau proteins are important hallmarks of AD. The identification of early pathomechanisms of AD is critically important for discovery of early diagnosis markers. Decreased brain metabolism is one of the earliest clinical symptoms of AD that indicate mitochondrial dysfunction in the brain. We performed the first comprehensive study integrating synaptic and non-synaptic mitochondrial proteome analysis (two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry) in correlation with Aß progression in APP/PS1 mice (3, 6, and 9 months of age). We identified changes of 60 mitochondrial proteins that reflect the progressive effect of APP overproduction and Aß accumulation on mitochondrial processes. Most of the significantly affected proteins play role in the mitochondrial electron transport chain, citric acid cycle, oxidative stress, or apoptosis. Altered expression levels of Htra2 and Ethe1, which showed parallel changes in different age groups, were confirmed also by Western blot. The common regulator bioinformatical analysis suggests the regulatory role of tumor necrosis factor (TNF) in Aß-mediated mitochondrial protein changes. Our results are in accordance with the previous postmortem human brain proteomic studies in AD in the case of many proteins. Our results could open a new path of research aiming early mitochondrial molecular mechanisms of Aß accumulation as a prodromal stage of human AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Mitocondrias/metabolismo , Proteoma/metabolismo , Péptidos beta-Amiloides/genética , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/genética , Proteoma/genética
16.
Curr Alzheimer Res ; 12(7): 655-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26159206

RESUMEN

A common feature of neurodegenerative diseases is the formation of misfolded, mostly enzyme resistant proteins. These substances may form toxic assemblies according to the current concept of the neurodegenerative diseases. Overlapping of the misfolded proteins is typical in these disorders. The formation of misfolded proteins and toxic aggregates point to a common pathway of these disorders: failure in normal protein folding in the ER as a consequence of ER-stress and mitochondrial energy production. Alzheimer's disease (AD) is a rather heterogeneous, multifactorial disorder with wide clinical heterogeneity and is classified into several subtypes. In AD the processing of the amyloid precursor protein (APP) and formation of toxic ß-amyloid (Aß) structures occur intraneuronally. Aß affects both ER and mitochondria and disturbs Ca(2+)-homeostasis of the cells. Mitochondrial dysfunction is one of the main pathological events in AD. Mitochondria accumulate Aß derived from the ER/Golgi or from the mitochondria-associated ER-membranes (MAM). Free radicals, oxidative stress and increasing Ca(2+)-concentration in mitochondria cause decreased ATP production. Mitochondrial dynamic and trafficking are also altered as a result of Aß toxicity. Synaptic mitochondria show a very high vulnerability. Depletion of Ca(2+) level in the ER results in dysfunction of protein folding and evokes unfolded protein response (UPR), and affects also mitochondria. MAM may play special role in the ER-mitochondria cross talk. Mitochondria themselves (using mitochondria-targeting antioxidants such as MitoQ) could be a special target for AD treatment. Another targets are the UPR cascade proteins (PERK, IRE1, ATF6) and receptors involved in Ca(2+) -level stabilization of the ER (Ryr, IP3R).


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Humanos
17.
J Proteomics ; 120: 142-57, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25782751

RESUMEN

The synapse is a particularly important compartment of neurons. To reveal its molecular characteristics we isolated whole brain synaptic (sMito) and non-synaptic mitochondria (nsMito) from the mouse brain with purity validated by electron microscopy and fluorescence activated cell analysis and sorting. Two-dimensional differential gel electrophoresis and mass spectrometry based proteomics revealed 22 proteins with significantly higher and 34 proteins with significantly lower levels in sMito compared to nsMito. Expression differences in some oxidative stress related proteins, such as superoxide dismutase [Mn] (Sod2) and complement component 1Q subcomponent-binding protein (C1qbp), as well as some tricarboxylic acid cycle proteins, including isocitrate dehydrogenase subunit alpha (Idh3a) and ATP-forming ß subunit of succinyl-CoA ligase (SuclA2), were verified by Western blot, the latter two also by immunohistochemistry. The data suggest altered tricarboxylic acid metabolism in energy supply of synapse while the marked differences in Sod2 and C1qbp support high sensitivity of synapses to oxidative stress. Further functional clustering demonstrated that proteins with higher synaptic levels are involved in synaptic transmission, lactate and glutathione metabolism. In contrast, mitochondrial proteins associated with glucose, lipid, ketone metabolism, signal transduction, morphogenesis, protein synthesis and transcription were enriched in nsMito. Altogether, the results suggest a specifically tuned composition of synaptic mitochondria. BIOLOGICAL SIGNIFICANCE: Neurons communicate with each other through synapse, a compartment metabolically isolated from the cell body. Mitochondria are concentrated in presynaptic terminals by active transport to provide energy supply for information transfer. Mitochondrial composition in the synapse may be different than in the cell body as some examples have demonstrated altered mitochondrial composition with cell type and cellular function in the muscle, heart and liver. Therefore, we posed the question whether protein composition of synaptic mitochondria reflects its specific functions. The determined protein difference pattern was in accordance with known functional specialties of high demand synaptic mitochondria. The data also suggest specifically tuned metabolic fluxes for energy production by means of interaction with glial cells surrounding the synapse. These findings provide possible mechanisms for dynamically adapting synaptic mitochondrial output to actual demand. In turn, an increased vulnerability of synaptic mitochondria to oxidative stress is implied by the data. This is important from theoretical but potentially also from therapeutic aspects. Mitochondria are known to be affected in some neurodegenerative and psychiatric disorders, and proteins with elevated level in synaptic mitochondria, e.g. C1qbp represent targets for future drug development, by which synaptic and non-synaptic mitochondria can be differentially affected.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/ultraestructura , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Animales , Ratones , Ratones Endogámicos BALB C , Proteínas del Tejido Nervioso/metabolismo
18.
Brain Res ; 1354: 227-35, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20659435

RESUMEN

Diffusible oligomeric assemblies of the amyloid beta-protein (Abeta) could be the primary factor in the pathogenic pathway leading to Alzheimer's disease (AD). Converging lines of evidence support the notion that AD begins with subtle alterations in synaptic efficacy, prior to the occurrence of extensive neuronal degeneration. Recently, however, a shared or overlapping pathogenesis for AD and epileptic seizures occurred as aberrant neuronal hyperexcitability, as well as nonconvulsive seizure activity were found in several different APP transgenic mouse lines. This generated a renewed attention to the well-known comorbidity of AD and epilepsy and interest in how Abeta oligomers influence neuronal excitability. In this study therefore, we investigated the effect of various in vitro-aged Abeta(1-42) oligomer solutions on the perforant pathway-evoked field potentials in the ventral hippocampal dentate gyrus in vivo. Firstly, Abeta oligomer solutions (1 microl, 200 microM) which had been aggregated in vitro for 0, 24 or 72h were injected into the hippocampus of urethane-anesthetized rats, in parallel with in vitro physico-chemical characterization of Abeta oligomerization (atomic force microscopy, thioflavin-T fluorescence). We found a marked increase of hippocampal population spike (pSpike) after injection of the 24-h Abeta oligomer solution and a decrease of the pSpike amplitude after injection of the 72-h Abeta oligomer. Since urethane anesthesia affects the properties of hippocampal evoked potentials, we repeated the injection of these two Abeta oligomer solutions in awake, freely moving animals. Evoked responses to perforant pathway stimulation revealed a 70% increase of pSpike amplitude 50 min after the 24-h Abeta oligomer injection and a 55% decrease after the 72-h Abeta oligomer injection. Field potentials, that reflect synaptic potentials, were not affected by the Abeta injection. These results demonstrate that oligomeric Abeta aggregates elicit opposite electrophysiological effects on neuronal excitability which depend on their degree of oligomerization.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Análisis de Varianza , Animales , Estimulación Eléctrica , Electrofisiología , Hipocampo/fisiología , Masculino , Microscopía de Fuerza Atómica , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA