RESUMEN
The production of high-purity hydrogen from hydrogen storage materials with further direct use of generated hydrogen in fuel cells is still a relevant research field. For this purpose, nickel-molybdenum-plated copper catalysts (NiMo/Cu), comprising between 1 and 20 wt.% molybdenum, as catalytic materials for hydrogen generation, were prepared using a low-cost, straightforward electroless metal deposition method by using citrate plating baths containing Ni2+-Mo6+ ions as a metal source and morpholine borane as a reducing agent. The catalytic activity of the prepared NiMo/Cu catalysts toward alkaline sodium borohydride (NaBH4) hydrolysis increased with the increase in the content of molybdenum present in the catalysts. The hydrogen generation rate of 6.48 L min-1 gcat-1 was achieved by employing NiMo/Cu comprising 20 wt.% at a temperature of 343 K and a calculated activation energy of 60.49 kJ mol-1 with remarkable stability, retaining 94% of its initial catalytic activity for NaBH4 hydrolysis following the completion of the fifth cycle. The synergetic effect between nickel and molybdenum, in addition to the formation of solid-state solutions between metals, promoted the hydrogen generation reaction.
RESUMEN
This study focuses on fabricating cobalt particles deposited on graphitic carbon nitride (Co/gCN) using annealing, microwave-assisted and hydrothermal syntheses, and their employment in hydrogen and oxygen evolution (HER and OER) reactions. Composition, surface morphology, and structure were examined using inductively coupled plasma optical emission spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The performance of Co-modified gCN composites for the HER and OER were investigated in an alkaline media (1 M KOH). Compared to the metal-free gCN, the modification of gCN with Co enhances the electrocatalytic activity towards the HER and OER. Additionally, thermal annealing of both Co(NO3)2 and melamine at 520 °C for 4 h results in the preparation of an effective bifunctional Co3O4/gCN catalyst for the HER with the lower Eonset of -0.24 V, a small overpotential of -294.1 mV at 10 mA cm-2, and a low Tafel slope of -29.6 mV dec-1 in a 1.0 M KOH solution and for the OER with the onset overpotential of 286.2 mV and overpotential of 422.3 mV to achieve a current density of 10 mA cm-2 with the Tafel slope of 72.8 mV dec-1.
RESUMEN
In this study, NiMo catalysts that have different metal loadings in the range of ca. 28-106 µg cm-2 were electrodeposited on the Ti substrate followed by their decoration with a very low amount of Au-crystallites in the range of ca. 1-5 µg cm-2 using the galvanic displacement method. The catalytic performance for hydrogen evolution reaction (HER) was evaluated on the NiMo/Ti and Au(NiMo)/Ti catalysts in an alkaline medium. It was found that among the investigated NiMo/Ti and Au(NiMo)/Ti catalysts, the Au(NiMo)/Ti-3 catalyst with the Au loading of 5.2 µg cm-2 gives the lowest overpotential of 252 mV for the HER to reach a current density of 10 mA·cm-2. The current densities for HER increase ca. 1.1-2.7 and ca. 1.1-2.2 times on the NiMo/Ti and Au(NiMo)/Ti catalysts, respectively, at -0.424 V, with an increase in temperature from 25 °C to 75 °C.
RESUMEN
In this study, sodium borohydride oxidation has been investigated on the platinum nanoparticles modified copper/titanium catalysts (PtNPsCu/Ti), which were fabricated by employing the electroless copper plating and galvanic displacement technique. ICP-OES, XRD, FESEM, and EDX have been used to characterize PtNPsCu/Ti catalysts' composition, structure, and surface morphology. The oxidation of sodium borohydride was examined on the PtNPsCu/Ti catalysts using cyclic voltammetry and chrono-techniques.
RESUMEN
Groundwater treatment waste (GWTW), as an environmentally friendly renewable nanomaterial, was implemented for the removal of anodized aluminum dye Sanodure Green (SG) from aqueous solutions. The capability of the SG metal complex dye removal was assessed by measuring solution decoloration and chromium elimination degree. GWTW was characterized using FTIR, SEM, EDX, TEM, XPS and surface area measurements. Kinetic curves were obtained by changing initial dye concentration, pH, temperature and adsorbent dose. Kinetic studies showed that up to 90 % of SG dye was removed within a contact time of 20 min. The adsorption of the dye was favourable at 293 K temperature in the acidic pH region (pH 1.5-2.0) with maximum adsorption capacity 185 mg g-1. Langmuir-Freundlich isotherm model as well as hyperbolic tangent, diffusion-chemisorption and Elovich kinetic models accurately describe the dye removal process. The calculated thermodynamic parameters confirmed that SG dye removal occurred spontaneously and exothermically. The magnitude of enthalpy change (ΔH° = -35.80 kJ mol-1) was in agreement with the electrostatic interaction. The adsorption potential of GWTW for SG dye removal was also evaluated using a real wastewater produced after dyeing of anodized aluminum.
RESUMEN
Invasive plant species tend to migrate from their native habitats under favourable climatic conditions; therefore, trophic and other relationships in ecosystems are changing. To investigate the effect of natural organic matter derived from native Alnus glutinosa tree species and from invasive in Lithuania Acer negundo tree species on copper toxicity in Lemna minor, we analysed the dynamics of Cu binding in aqueous leaf litter extracts (LLE) and plant accumulation, morphophysiological parameters, and antioxidative response. The results revealed that A. glutinosa LLE contained polyphenols (49 mg pyrogallol acid equivalent (PAE)/g DM) and tannins (7.5 mg PAE/g DM), while A. negundo LLE contained only polyphenols (23 mg PAE/g DM). The ability of LLE to bind Cu increased rapidly over 1.5-3 h to 61% and 49% of the total Cu concentration (6.0 ± 0.9 mg/L), respectively for A. glutinosa (AG) and A. negundo (AN), then remained relatively stable until 48 h. At the same time, L. minor accumulated 384, 241 or 188 µg Cu/g FW when plants were exposed to Cu (100 µM CuSO4), Cu with 100 mg/L dissolved organic carbon (DOC) from either AG LLE or AN LLE, accordingly. Catalase (CAT) and guaiacol peroxidase (POD) played a dominant role in hydrogen peroxide scavenging when plants were exposed to Cu and 10 or 100 mg/L DOCAG mixtures in both the first (up to 6h) and the second (6-48 h) response phases. Due to functioning of oxidative stress enzymes, the levels of the lipid peroxidation product malondialdehyde (MDA) reduced in concentration-dependent manner, compared to Cu treatment. When combining Cu and DOCAN treatments, the most sensitive enzymes were POD, ascorbate peroxidase and glutathione reductase. Their activities collectively with CAT were sufficient to reduce MDA levels to Cu-induced in the initial, but not the second response phase. These data suggest that leaf litter extracts of different phenolic compositions elicited different antioxidant response profiles resulting in different reductions of Cu stress, thus effecting L. minor frond and root development observed after seven days. The complex data from this study may be useful in modelling the response of the aquatic ecosystem to a changing environment.
RESUMEN
Simple and convenient innovative assays in vitro demonstrating Metschnikowia spp. competition with Saccharomyces cerevisiae for an essential nutrient iron are presented. The tested Metschnikowia strains possess a common genetically determined property of secreting a pulcherriminic acid which in the presence of iron (III) ions forms an insoluble red pigment pulcherrimin. Both initial accumulation in growing Metschnikowia cells and subsequent precipitation in the form of pulcherrimin in the media contribute to iron removal by functioning cells. The predominant way depends on the strain. Due to fast elimination of iron, the growth of S. cerevisiae can be inhibited by tested Metschnikowia strains at concentrations of elemental iron in the media not exceeding 12 mg kg-1. Inhibition can be regulated by additional supply of microquantities of iron onto the surface of the solid medium within 20-24 h. At relatively low concentrations of elemental iron (below 1 mg kg-1), additional supplements of iron onto the surface provide an advancement in understanding the inhibition possibilities and enable the assay control. Microscopy observations revealed that Metschnikowia chlamydospores are involved in iron removal at relatively high iron concentrations. The results may find application in development of new methodologies and strategies for biocontrol or inhibition of pathogenic microorganisms.
Asunto(s)
Antibiosis , Medios de Cultivo/química , Hierro/metabolismo , Metschnikowia/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Aminoácidos Sulfúricos/farmacología , Antifúngicos/farmacología , Agentes de Control Biológico/metabolismo , Piperidinas/farmacología , Pirazinas/metabolismoRESUMEN
Biocompatible superparamagnetic iron oxide nanoparticles (NPs) through smart chemical functionalization of their surface with fluorescent species, therapeutic proteins, antibiotics, and aptamers offer remarkable potential for diagnosis and therapy of disease sites at their initial stage of growth. Such NPs can be obtained by the creation of proper linkers between magnetic NP and fluorescent or drug probes. One of these linkers is gold, because it is chemically stable, nontoxic and capable to link various biomolecules. In this study, we present a way for a simple and reliable decoration the surface of magnetic NPs with gold quantum dots (QDs) containing more than 13.5% of Au+. Emphasis is put on the synthesis of magnetic NPs by co-precipitation using the amino acid methionine as NP growth-stabilizing agent capable to later reduce and attach gold species. The surface of these NPs can be further conjugated with targeting and chemotherapy agents, such as cancer stem cell-related antibodies and the anticancer drug doxorubicin, for early detection and improved treatment. In order to verify our findings, high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), FTIR spectroscopy, inductively coupled plasma mass spectroscopy (ICP-MS), and X-ray photoelectron spectroscopy (XPS) of as-formed CoFe2O4 NPs before and after decoration with gold QDs were applied.
RESUMEN
Cu accumulation in the internodal cell of charophyte Nitellopsis obtusa or its compartments was investigated after 3-h-exposure to lethal effective concentrations (8-day LC50) of CuO nanoparticle (nCuO) suspension or CuSO4 solution, i.e. 100 mg/L nCuO or 3.18 mg Cu/L as CuSO4. In both cases, the major part of Cu accumulated in the cell walls. The presence of CuO NPs in the cell wall and within the cell was visualized by scanning electron microscope images as well as confirmed by energy dispersive X-ray spectrum data. Although a threefold higher intracellular concentration of Cu was found after treatment with nCuO suspension, 3.18 mg Cu/L as CuSO4 induced fast and substantial depolarization of cell membrane potential contrary to that of 100 mg/L nCuO. A delayed effect of nCuO on the survival of the cells was also observed. This suggests that internally accumulated Cu was far less active and further supports the hypothesis of delayed toxicity of internalized nCuO NPs to charophyte cells.
Asunto(s)
Carofíceas/metabolismo , Cobre/metabolismo , Nanopartículas del Metal/toxicidad , Compartimento Celular , Carofíceas/efectos de los fármacos , Cobre/toxicidad , SuspensionesRESUMEN
Formation of self-organized regular patterns (Liesegang patterns) due to reaction-diffusion process in the gel medium and related to vital activity of yeasts is presented. Two different yeast strains (Candida pulcherrima and non-Candida pulcherrima) possess a common characteristic feature to secrete a precursor which in the presence of iron(III) ions forms an insoluble red pigment. During yeast cultivation onto solid agar media, periodic spontaneous distinctly spaced red-colored patterns around the yeasts can are formed if the concentration of elemental iron in the growth media is in the range 4-12mg/L. By changing the composition yeast growth media (YEPD or minimal), growth time and temperature, the mode of yeast inoculation, a variety of red-pigmented patterns around live and proliferating yeasts can be obtained.
Asunto(s)
Pigmentos Biológicos/metabolismo , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo , Medios de Cultivo/química , Difusión , Compuestos Férricos/metabolismo , TemperaturaRESUMEN
Deprotonation of D-mannitol was studied in aqueous basic solutions by means of potentiometry and (13)C NMR spectroscopy. Two-step dissociation in the pH range from 12 to 13.8 was shown, and successive dissociation constants K(a1) and K(a2) were determined. In a solution with ionic strength I = 1.0 M (NaOH + NaNO(3)) pK(a1) = 13.1 +/- 0.1 and pK(a2) = 13.8 +/- 0.2. With increasing ionic strength from 0.75 to 3.0 M, both pK(a1) and pK(a2) values decrease. Deprotonation-induced chemical shifts in pH-variable (13)C NMR spectra show that the OH-groups next to internal carbon atoms C-3 and C-4 dissociate to a greater extent compared to OH-groups next to external carbon atoms C-1 and C-6.
Asunto(s)
Manitol/química , Agua/química , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Estructura Molecular , Protones , Soluciones/químicaRESUMEN
The formation of four Cu(II)-xylitol complexes was observed in aqueous alkaline solutions (11.0< or =pH< or =14.0, I=1.0, 20 degrees C) by means of direct current polarography and VIS spectrophotometry. Mononuclear hydroxy complexes, CuXyl(OH)- (log beta=17.7 +/- 0.5), CuXyl(OH)2(2-) (log beta=20.2 +/- 0.3) and CuXyl2(OH)2(4-) (log beta=22.4 +/- 0.3), are formed at high ligand-to-metal ratios (L:M> or =10), whereas dinuclear complex Cu2Xyl (log beta=29.2 +/- 0.3) is the predominant species at low ligand-to-metal ratio (L:M=0.5). Diffusion coefficients and molar absorptivities of the complex species were determined. pH variable 13C NMR suggested that pKa values of xylitol are rather similar and equal to 13.8 +/- 0.2, 13.9 +/- 0.1 and 13.9 +/- 0.2 for OH-groups adjacent to (C-1,C-5), (C-3) and (C-2,C-4) carbon atoms, respectively.