Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Pathol ; 193(6): 778-795, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37037284

RESUMEN

Over 150,000 Americans are diagnosed with colorectal cancer (CRC) every year, and annually >50,000 individuals are estimated to die of CRC, necessitating improvements in screening, prognostication, disease management, and therapeutic options. CRC tumors are removed en bloc with surrounding vasculature and lymphatics. Examination of regional lymph nodes at the time of surgical resection is essential for prognostication. Developing alternative approaches to indirectly assess recurrence risk would have utility in cases where lymph node yield is incomplete or inadequate. Spatially dependent, immune cell-specific (eg, tumor-infiltrating lymphocytes), proteomic, and transcriptomic expression patterns inside and around the tumor-the tumor immune microenvironment-can predict nodal/distant metastasis and probe the coordinated immune response from the primary tumor site. The comprehensive characterization of tumor-infiltrating lymphocytes and other immune infiltrates is possible using highly multiplexed spatial omics technologies, such as the GeoMX Digital Spatial Profiler. In this study, machine learning and differential co-expression analyses helped identify biomarkers from Digital Spatial Profiler-assayed protein expression patterns inside, at the invasive margin, and away from the tumor, associated with extracellular matrix remodeling (eg, granzyme B and fibronectin), immune suppression (eg, forkhead box P3), exhaustion and cytotoxicity (eg, CD8), Programmed death ligand 1-expressing dendritic cells, and neutrophil proliferation, among other concomitant alterations. Further investigation of these biomarkers may reveal independent risk factors of CRC metastasis that can be formulated into low-cost, widely available assays.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Proteómica , Neoplasias Colorrectales/metabolismo , Biomarcadores/metabolismo , Ganglios Linfáticos , Neoplasias del Colon/patología , Linfocitos Infiltrantes de Tumor , Microambiente Tumoral , Biomarcadores de Tumor/metabolismo
2.
Exp Dermatol ; 33(1): e14949, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37864429

RESUMEN

Intraoperative margin analysis is crucial for the successful removal of cutaneous squamous cell carcinomas (cSCC). Artificial intelligence technologies (AI) have previously demonstrated potential for facilitating rapid and complete tumour removal using intraoperative margin assessment for basal cell carcinoma. However, the varied morphologies of cSCC present challenges for AI margin assessment. The aim of this study was to develop and evaluate the accuracy of an AI algorithm for real-time histologic margin analysis of cSCC. To do this, a retrospective cohort study was conducted using frozen cSCC section slides. These slides were scanned and annotated, delineating benign tissue structures, inflammation and tumour to develop an AI algorithm for real-time margin analysis. A convolutional neural network workflow was used to extract histomorphological features predictive of cSCC. This algorithm demonstrated proof of concept for identifying cSCC with high accuracy, highlighting the potential for integration of AI into the surgical workflow. Incorporation of AI algorithms may improve efficiency and completeness of real-time margin assessment for cSCC removal, particularly in cases of moderately and poorly differentiated tumours/neoplasms. Further algorithmic improvement incorporating surrounding tissue context is necessary to remain sensitive to the unique epidermal landscape of well-differentiated tumours, and to map tumours to their original anatomical position/orientation.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Aprendizaje Profundo , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/patología , Cirugía de Mohs , Neoplasias Cutáneas/patología , Estudios Retrospectivos , Secciones por Congelación , Inteligencia Artificial , Carcinoma Basocelular/patología
3.
Dig Dis Sci ; 68(5): 2015-2022, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36401758

RESUMEN

BACKGROUND: We developed a deep learning algorithm to evaluate defecatory patterns to identify dyssynergic defecation using 3-dimensional high definition anal manometry (3D-HDAM). AIMS: We developed a 3D-HDAM deep learning algorithm to evaluate for dyssynergia. METHODS: Spatial-temporal data were extracted from consecutive 3D-HDAM studies performed between 2018 and 2020 at Dartmouth-Hitchcock Health. The technical procedure and gold standard definition of dyssynergia were based on the London consensus, adapted to the needs of 3D-HDAM technology. Three machine learning models were generated: (1) traditional machine learning informed by conventional anorectal function metrics, (2) deep learning, and (3) a hybrid approach. Diagnostic accuracy was evaluated using bootstrap sampling to calculate area-under-the-curve (AUC). To evaluate overfitting, models were validated by adding 502 simulated defecation maneuvers with diagnostic ambiguity. RESULTS: 302 3D-HDAM studies representing 1208 simulated defecation maneuvers were included (average age 55.2 years; 80.5% women). The deep learning model had comparable diagnostic accuracy [AUC 0.91 (95% confidence interval 0.89-0.93)] to traditional [AUC 0.93(0.92-0.95)] and hybrid [AUC 0.96(0.94-0.97)] predictive models in training cohorts. However, the deep learning model handled ambiguous tests more cautiously than other models; the deep learning model was more likely to designate an ambiguous test as inconclusive [odds ratio 4.21(2.78-6.38)] versus traditional/hybrid approaches. CONCLUSIONS: Deep learning is capable of considering complex spatial-temporal information on 3D-HDAM technology. Future studies are needed to evaluate the clinical context of these preliminary findings.


Asunto(s)
Aprendizaje Profundo , Defecación , Humanos , Femenino , Persona de Mediana Edad , Masculino , Manometría/métodos , Canal Anal , Ataxia , Estreñimiento/diagnóstico
4.
Mod Pathol ; 34(4): 808-822, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33299110

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a fatty liver disease characterized by accumulation of fat in hepatocytes with concurrent inflammation and is associated with morbidity, cirrhosis and liver failure. After extraction of a liver core biopsy, tissue sections are stained with hematoxylin and eosin (H&E) to grade NASH activity, and stained with trichrome to stage fibrosis. Methods to computationally transform one stain into another on digital whole slide images (WSI) can lessen the need for additional physical staining besides H&E, reducing personnel, equipment, and time costs. Generative adversarial networks (GAN) have shown promise for virtual staining of tissue. We conducted a large-scale validation study of the viability of GANs for H&E to trichrome conversion on WSI (n = 574). Pathologists were largely unable to distinguish real images from virtual/synthetic images given a set of twelve Turing Tests. We report high correlation between staging of real and virtual stains ([Formula: see text]; 95% CI: 0.84-0.88). Stages assigned to both virtual and real stains correlated similarly with a number of clinical biomarkers and progression to End Stage Liver Disease (Hazard Ratio HR = 2.06, 95% CI: 1.36-3.12, p < 0.001 for real stains; HR = 2.02, 95% CI: 1.40-2.92, p < 0.001 for virtual stains). Our results demonstrate that virtual trichrome technologies may offer a software solution that can be employed in the clinical setting as a diagnostic decision aid.


Asunto(s)
Compuestos Azo , Colorantes , Eosina Amarillenta-(YS) , Interpretación de Imagen Asistida por Computador , Cirrosis Hepática/diagnóstico , Hígado/patología , Verde de Metilo , Microscopía , Redes Neurales de la Computación , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Coloración y Etiquetado , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Niño , Toma de Decisiones Clínicas , Técnicas de Apoyo para la Decisión , Femenino , Hematoxilina , Humanos , Cirrosis Hepática/patología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Programas Informáticos , Adulto Joven
6.
Mod Pathol ; 33(9): 1638-1648, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32238879

RESUMEN

Immunohistochemistry (IHC) is a diagnostic technique used throughout pathology. A machine learning algorithm that could predict individual cell immunophenotype based on hematoxylin and eosin (H&E) staining would save money, time, and reduce tissue consumed. Prior approaches have lacked the spatial accuracy needed for cell-specific analytical tasks. Here IHC performed on destained H&E slides is used to create a neural network that is potentially capable of predicting individual cell immunophenotype. Twelve slides were stained with H&E and scanned to create digital whole slide images. The H&E slides were then destained, and stained with SOX10 IHC. The SOX10 IHC slides were scanned, and corresponding H&E and IHC digital images were registered. Color-thresholding and machine learning techniques were applied to the registered H&E and IHC images to segment 3,396,668 SOX10-negative cells and 306,166 SOX10-positive cells. The resulting segmentation was used to annotate the original H&E images, and a convolutional neural network was trained to predict SOX10 nuclear staining. Sixteen thousand three hundred and nine image patches were used to train the virtual IHC (vIHC) neural network, and 1,813 image patches were used to quantitatively evaluate it. The resulting vIHC neural network achieved an area under the curve of 0.9422 in a receiver operator characteristics analysis when sorting individual nuclei. The vIHC network was applied to additional images from clinical practice, and was evaluated qualitatively by a board-certified dermatopathologist. Further work is needed to make the process more efficient and accurate for clinical use. This proof-of-concept demonstrates the feasibility of creating neural network-driven vIHC assays.


Asunto(s)
Inmunohistoquímica/métodos , Aprendizaje Automático , Melanoma/metabolismo , Redes Neurales de la Computación , Factores de Transcripción SOXE/metabolismo , Neoplasias Cutáneas/metabolismo , Algoritmos , Bases de Datos Factuales , Humanos , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/patología , Neoplasias Cutáneas/patología , Coloración y Etiquetado
7.
J Immunol ; 189(7): 3707-13, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22956582

RESUMEN

Asthma is a chronic condition with high morbidity and healthcare costs, and cockroach allergens are an established cause of urban pediatric asthma. A better understanding of cell types involved in promoting lung inflammation could provide new targets for the treatment of chronic pulmonary disease. Because of its role in regulating myeloid cell-dependent inflammatory processes, we examined A(2B) R expression by myeloid cells in a cockroach allergen model of murine asthma-like pulmonary inflammation. Both systemic and myeloid tissue-specific A(2B) R deletion significantly decreased pulmonary inflammatory cell recruitment, airway mucin production, and proinflammatory cytokine secretion after final allergen challenge in sensitized mice. A(2B) R deficiency resulted in a dramatic reduction on Th2-type airways responses with decreased pulmonary eosinophilia without augmenting neutrophilia, and decreased lung IL-4, IL-5, and IL-13 production. Chemokine analysis demonstrated that eotaxin 1 and 2 secretion in response to repeated allergen challenge is myeloid cell A(2B) R dependent. In contrast, there were no differences in the levels of the CXC chemokines keratinocyte-derived chemokine and MIP-2 in the myeloid cell A(2B) R-deficient mice, strengthening A(2B) R involvement in the development of Th2-type airways inflammation. Proinflammatory TNF-α, IFN-γ, and IL-17 secretion were also reduced in systemic and myeloid tissue-specific A(2B) R deletion mouse lines. Our results demonstrate Th2-type predominance for A(2B) R expression by myeloid cells as a mechanism of development of asthma-like pulmonary inflammation.


Asunto(s)
Alérgenos/toxicidad , Mediadores de Inflamación/administración & dosificación , Células Mieloides/inmunología , Células Mieloides/patología , Receptor de Adenosina A2B/administración & dosificación , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/patología , Animales , Blattellidae/inmunología , Enfermedad Crónica , Femenino , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/fisiología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células Mieloides/metabolismo , Receptor de Adenosina A2B/deficiencia , Receptor de Adenosina A2B/fisiología , Hipersensibilidad Respiratoria/metabolismo
8.
NPJ Precis Oncol ; 8(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172524

RESUMEN

Successful treatment of solid cancers relies on complete surgical excision of the tumor either for definitive treatment or before adjuvant therapy. Intraoperative and postoperative radial sectioning, the most common form of margin assessment, can lead to incomplete excision and increase the risk of recurrence and repeat procedures. Mohs Micrographic Surgery is associated with complete removal of basal cell and squamous cell carcinoma through real-time margin assessment of 100% of the peripheral and deep margins. Real-time assessment in many tumor types is constrained by tissue size, complexity, and specimen processing / assessment time during general anesthesia. We developed an artificial intelligence platform to reduce the tissue preprocessing and histological assessment time through automated grossing recommendations, mapping and orientation of tumor to the surgical specimen. Using basal cell carcinoma as a model system, results demonstrate that this approach can address surgical laboratory efficiency bottlenecks for rapid and complete intraoperative margin assessment.

9.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559138

RESUMEN

Summary: Elemental imaging provides detailed profiling of metal bioaccumulation, offering more precision than bulk analysis by targeting specific tissue areas. However, accurately identifying comparable tissue regions from elemental maps is challenging, requiring the integration of hematoxylin and eosin (H&E) slides for effective comparison. Facilitating the streamlined co-registration of Whole Slide Images (WSI) and elemental maps, TRACE enhances the analysis of tissue regions and elemental abundance in various pathological conditions. Through an interactive containerized web application, TRACE features real-time annotation editing, advanced statistical tools, and data export, supporting comprehensive spatial analysis. Notably, it allows for comparison of elemental abundances across annotated tissue structures and enables integration with other spatial data types through WSI co-registration. Availability and Implementation: Available on the following platforms- GitHub: jlevy44/trace_app , PyPI: trace_app , Docker: joshualevy44/trace_app , Singularity: joshualevy44/trace_app . Contact: joshua.levy@cshs.org. Supplementary information: Supplementary data are available.

10.
Pac Symp Biocomput ; 29: 464-476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160300

RESUMEN

Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e., embeddings) of image patches comprising larger slides, which are used as node attributes in slide graphs. Spatial omics data, including spatial transcriptomics, is a novel paradigm offering a wealth of detailed information. Pairing this data with corresponding histological imaging localized at 50-micron resolution, may facilitate the development of algorithms which better appreciate the morphological and molecular underpinnings of carcinogenesis. Here, we explore the utility of leveraging spatial transcriptomics data with a contrastive crossmodal pretraining mechanism to generate deep learning models that can extract molecular and histological information for graph-based learning tasks. Performance on cancer staging, lymph node metastasis prediction, survival prediction, and tissue clustering analyses indicate that the proposed methods bring improvement to graph based deep learning models for histopathological slides compared to leveraging histological information from existing schemes, demonstrating the promise of mining spatial omics data to enhance deep learning for pathology workflows.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Biología Computacional , Neoplasias/genética , Algoritmos , Análisis por Conglomerados
11.
Pac Symp Biocomput ; 29: 477-491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160301

RESUMEN

The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways, and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating photoaging and developing new therapeutics. Challenges to current methods include limited focus on dermal elastosis variations and reliance on self-reported measures, which can introduce subjectivity and inconsistency. Spatial transcriptomics offers an opportunity to assess photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies that intervene in photoaging and preventing cancer. Evaluation of distinct histological architectures using highly-multiplexed spatial technologies can identify specific cell lineages that have been understudied due to their location beyond the depth of UV penetration. However, the cost and interpatient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens collected adjacent to surgical resection sites for basal cell and squamous cell keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) information. We developed machine learning models that achieved a macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles across the slides, and accurately captured biological pathways across various tissue architectures.


Asunto(s)
Envejecimiento de la Piel , Humanos , Envejecimiento de la Piel/genética , Reproducibilidad de los Resultados , Biología Computacional , Perfilación de la Expresión Génica , Eosina Amarillenta-(YS) , Transcriptoma
12.
Crit Care Med ; 41(1): 159-70, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23222255

RESUMEN

OBJECTIVE: The cause of death in murine models of sepsis remains unclear. The primary purpose of this study was to determine if significant lung injury develops in mice predicted to die after cecal ligation and puncture-induced sepsis compared with those predicted to live. DESIGN: Prospective, laboratory controlled experiments. SETTING: University research laboratory. SUBJECTS: Adult, female, outbred Institute of Cancer Research mice. INTERVENTIONS: Mice underwent cecal ligation and puncture to induce sepsis. Two groups of mice were euthanized at 24 and 48 hrs postcecal ligation and puncture and samples were collected. These mice were further stratified into groups predicted to die (Die-P) and predicted to live (Live-P) based on plasma interleukin-6 levels obtained 24 hrs postcecal ligation and puncture. Multiple measures of lung inflammation and lung injury were quantified in these two groups. Results from a group of mice receiving intratracheal normal saline without surgical intervention were also included as a negative control. As a positive control, bacterial pneumonia was induced with Pseudomonas aeruginosa to cause definitive lung injury. Separate mice were followed for survival until Day 28 postcecal ligation and puncture. These mice were used to verify the interleukin-6 cutoffs for survival prediction. MEASUREMENTS AND MAIN RESULTS: After sepsis, both the Die-P and Live-P mice had significantly suppressed measures of respiratory physiology but maintained normal levels of arterial oxygen saturation. Bronchoalveolar lavage levels of pro- and anti-inflammatory cytokines were not elevated in the Die-P mice compared with the Live-P. In addition, there was no increase in the recruitment of neutrophils to the lung, pulmonary vascular permeability, or histological evidence of damage. In contrast, all of these pulmonary injury and inflammatory parameters were increased in mice with Pseudomonas pneumonia. CONCLUSIONS: These data demonstrate that mice predicted to die during sepsis have no significant lung injury. In murine intra-abdominal sepsis, pulmonary injury cannot be considered the etiology of death in the acute phase.


Asunto(s)
Lesión Pulmonar Aguda/patología , Causas de Muerte , Síndrome de Dificultad Respiratoria/patología , Sepsis/mortalidad , Sepsis/patología , Animales , Ciego/lesiones , Modelos Animales de Enfermedad , Femenino , Interleucina-6/sangre , Ligadura , Ratones , Punciones , Análisis de Supervivencia
13.
Am J Pathol ; 181(3): 845-57, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22796441

RESUMEN

Asthma may be triggered by multiple mediators, including allergen-IgE cross-linking and non-IgE mechanisms. Several clinical studies have shown acute ethanol consumption exacerbates asthma, yet no animal model exists to study this process. We developed a model of ethanol-triggered asthma in allergen-sensitized mice to evaluate the mechanisms of ethanol inducing asthma-like responses. Outbred mice were exposed to cockroach allergens on Days 0 and 14; and on Day 21, mice received ethanol by oral gavage. Tracer studies confirmed alcohol aspiration did not occur. Within 30 minutes, alcohol induced degranulation of over 74% of mast cells, and multiple parameters of asthma-like pulmonary inflammation were triggered. Ethanol-gavaged mice had a fivefold increased production of eotaxin-2 (534 pg/mL) and a sevenfold increase in bronchoalveolar eosinophils (70,080 cells). Ethanol induced a 10-fold increase in IL-13, from 84 pg/mL in sensitized mice to 845 pg/mL in ethanol-gavaged sensitized mice. In cockroach allergen-sensitized mice, ethanol triggered asthma-like changes in respiratory physiology and a significant fivefold increase in airway mucin production. Importantly, none of these asthmatic exacerbations were observed in normal mice gavaged with ethanol. Cromolyn sodium effectively stabilized mast cells, yet increased mucin production and bronchoalveolar eosinophil recruitment. Together, these data show a single oral alcohol exposure will trigger asthma-like pulmonary inflammation in allergen-sensitized mice, providing a novel asthma model.


Asunto(s)
Alérgenos/inmunología , Asma/inmunología , Etanol/administración & dosificación , Inmunización , Administración Oral , Consumo de Bebidas Alcohólicas/patología , Intoxicación Alcohólica/complicaciones , Intoxicación Alcohólica/inmunología , Intoxicación Alcohólica/patología , Intoxicación Alcohólica/fisiopatología , Animales , Asma/complicaciones , Asma/patología , Asma/fisiopatología , Degranulación de la Célula , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Eosinofilia/complicaciones , Eosinofilia/inmunología , Eosinofilia/patología , Eosinofilia/fisiopatología , Eosinófilos/patología , Femenino , Pulmón/inmunología , Pulmón/patología , Pulmón/fisiopatología , Mastocitos/patología , Mastocitos/fisiología , Ratones , Ratones Endogámicos ICR , Mucinas/biosíntesis , Neumonía/complicaciones , Neumonía/inmunología , Neumonía/patología , Neumonía/fisiopatología , Pruebas de Función Respiratoria , Células Th2/inmunología
14.
Front Oncol ; 13: 1196517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37427140

RESUMEN

Background: Mohs micrographic surgery is a procedure used for non-melanoma skin cancers that has 97-99% cure rates largely owing to 100% margin analysis enabled by en face sectioning with real-time, iterative histologic assessment. However, the technique is limited to small and aggressive tumors in high-risk areas because the histopathological preparation and assessment is very time intensive. To address this, paired-agent imaging (PAI) can be used to rapidly screen excised specimens and identify tumor positive margins for guided and more efficient microscopic evaluation. Methods: A mouse xenograft model of human squamous cell carcinoma (n = 8 mice, 13 tumors) underwent PAI. Targeted (ABY-029, anti-epidermal growth factor receptor (EGFR) affibody molecule) and untargeted (IRDye 680LT carboxylate) imaging agents were simultaneously injected 3-4 h prior to surgical tumor resection. Fluorescence imaging was performed on main, unprocessed excised specimens and en face margins (tissue sections tangential to the deep margin surface). Binding potential (BP) - a quantity proportional to receptor concentration - and targeted fluorescence signal were measured for each, and respective mean and maximum values were analyzed to compare diagnostic ability and contrast. The BP and targeted fluorescence of the main specimen and margin samples were also correlated with EGFR immunohistochemistry (IHC). Results: PAI consistently outperformed targeted fluorescence alone in terms of diagnostic ability and contrast-to-variance ratio (CVR). Mean and maximum measures of BP resulted in 100% accuracy, while mean and maximum targeted fluorescence signal offered 97% and 98% accuracy, respectively. Moreover, maximum BP had the greatest average CVR for both main specimen and margin samples (average 1.7 ± 0.4 times improvement over other measures). Fresh tissue margin imaging improved similarity with EGFR IHC volume estimates compared to main specimen imaging in line profile analysis; and margin BP specifically had the strongest concordance (average 3.6 ± 2.2 times improvement over other measures). Conclusions: PAI was able to reliably distinguish tumor from normal tissue in fresh en face margin samples using the single metric of maximum BP. This demonstrated the potential for PAI to act as a highly sensitive screening tool to eliminate the extra time wasted on real-time pathological assessment of low-risk margins.

15.
BioData Min ; 16(1): 23, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481666

RESUMEN

BACKGROUND: Deep learning models can infer cancer patient prognosis from molecular and anatomic pathology information. Recent studies that leveraged information from complementary multimodal data improved prognostication, further illustrating the potential utility of such methods. However, current approaches: 1) do not comprehensively leverage biological and histomorphological relationships and 2) make use of emerging strategies to "pretrain" models (i.e., train models on a slightly orthogonal dataset/modeling objective) which may aid prognostication by reducing the amount of information required for achieving optimal performance. In addition, model interpretation is crucial for facilitating the clinical adoption of deep learning methods by fostering practitioner understanding and trust in the technology. METHODS: Here, we develop an interpretable multimodal modeling framework that combines DNA methylation, gene expression, and histopathology (i.e., tissue slides) data, and we compare performance of crossmodal pretraining, contrastive learning, and transfer learning versus the standard procedure. RESULTS: Our models outperform the existing state-of-the-art method (average 11.54% C-index increase), and baseline clinically driven models (average 11.7% C-index increase). Model interpretations elucidate consideration of biologically meaningful factors in making prognosis predictions. DISCUSSION: Our results demonstrate that the selection of pretraining strategies is crucial for obtaining highly accurate prognostication models, even more so than devising an innovative model architecture, and further emphasize the all-important role of the tumor microenvironment on disease progression.

16.
J Pathol Inform ; 14: 100187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36700236

RESUMEN

Current Procedural Terminology Codes is a numerical coding system used to bill for medical procedures and services and crucially, represents a major reimbursement pathway. Given that pathology services represent a consequential source of hospital revenue, understanding instances where codes may have been misassigned or underbilled is critical. Several algorithms have been proposed that can identify improperly billed CPT codes in existing datasets of pathology reports. Estimation of the fiscal impacts of these reports requires a coder (i.e., billing staff) to review the original reports and manually code them again. As the re-assignment of codes using machine learning algorithms can be done quickly, the bottleneck in validating these reassignments is in this manual re-coding process, which can prove cumbersome. This work documents the development of a rapidly deployable dashboard for examination of reports that the original coder may have misbilled. Our dashboard features the following main components: (1) a bar plot to show the predicted probabilities for each CPT code, (2) an interpretation plot showing how each word in the report combines to form the overall prediction, and (3) a place for the user to input the CPT code they have chosen to assign. This dashboard utilizes the algorithms developed to accurately identify CPT codes to highlight the codes missed by the original coders. In order to demonstrate the function of this web application, we recruited pathologists to utilize it to highlight reports that had codes incorrectly assigned. We expect this application to accelerate the validation of re-assigned codes through facilitating rapid review of false-positive pathology reports. In the future, we will use this technology to review thousands of past cases in order to estimate the impact of underbilling has on departmental revenue.

17.
bioRxiv ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37577686

RESUMEN

Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e., embeddings) of image patches comprising larger slides, which are used as node attributes in slide graphs. Spatial omics data, including spatial transcriptomics, is a novel paradigm offering a wealth of detailed information. Pairing this data with corresponding histological imaging localized at 50-micron resolution, may facilitate the development of algorithms which better appreciate the morphological and molecular underpinnings of carcinogenesis. Here, we explore the utility of leveraging spatial transcriptomics data with a contrastive crossmodal pretraining mechanism to generate deep learning models that can extract molecular and histological information for graph-based learning tasks. Performance on cancer staging, lymph node metastasis prediction, survival prediction, and tissue clustering analyses indicate that the proposed methods bring improvement to graph based deep learning models for histopathological slides compared to leveraging histological information from existing schemes, demonstrating the promise of mining spatial omics data to enhance deep learning for pathology workflows.

18.
Cancer Cytopathol ; 131(10): 637-654, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37377320

RESUMEN

BACKGROUND: Adopting a computational approach for the assessment of urine cytology specimens has the potential to improve the efficiency, accuracy, and reliability of bladder cancer screening, which has heretofore relied on semisubjective manual assessment methods. As rigorous, quantitative criteria and guidelines have been introduced for improving screening practices (e.g., The Paris System for Reporting Urinary Cytology), algorithms to emulate semiautonomous diagnostic decision-making have lagged behind, in part because of the complex and nuanced nature of urine cytology reporting. METHODS: In this study, the authors report on the development and large-scale validation of a deep-learning tool, AutoParis-X, which can facilitate rapid, semiautonomous examination of urine cytology specimens. RESULTS: The results of this large-scale, retrospective validation study indicate that AutoParis-X can accurately determine urothelial cell atypia and aggregate a wide variety of cell-related and cluster-related information across a slide to yield an atypia burden score, which correlates closely with overall specimen atypia and is predictive of Paris system diagnostic categories. Importantly, this approach accounts for challenges associated with the assessment of overlapping cell cluster borders, which improve the ability to predict specimen atypia and accurately estimate the nuclear-to-cytoplasm ratio for cells in these clusters. CONCLUSIONS: The authors developed a publicly available, open-source, interactive web application that features a simple, easy-to-use display for examining urine cytology whole-slide images and determining the level of atypia in specific cells, flagging the most abnormal cells for pathologist review. The accuracy of AutoParis-X (and other semiautomated digital pathology systems) indicates that these technologies are approaching clinical readiness and necessitates full evaluation of these algorithms in head-to-head clinical trials.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Neoplasias Urológicas , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Citología , Citodiagnóstico/métodos , Algoritmos , Orina , Neoplasias Urológicas/diagnóstico , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/patología , Urotelio/patología
19.
Cancer Cytopathol ; 131(1): 19-29, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35997513

RESUMEN

BACKGROUND: Urine cytology is commonly used as a screening test for high-grade urothelial carcinoma for patients with risk factors or hematuria and is an essential step in longitudinal monitoring of patients with previous bladder cancer history. However, the semisubjective nature of current reporting systems for urine cytology (e.g., The Paris System) can hamper reproducibility. For instance, the incorporation of urothelial cell clusters into the classification schema is still an item of debate and perplexity among expert cytopathologists because several previous works have disputed their diagnostic relevance. METHODS: In this work, an automated preprocessing tool for urothelial cell cluster assessment was developed that divides urothelial cell clusters into meaningful components for downstream assessment (ie, population-based studies, workflow automation). RESULTS: In this work, an automated preprocessing tool for urothelial cell cluster assessment was developed that divides urothelial cell clusters into meaningful components for downstream assessment (ie, population-based studies, workflow automation). Results indicate that cell cluster atypia (i.e., defined by whether the cell cluster harbored multiple atypical cells, thresholded by a minimum number of cells), cell border overlap and smoothness, and total number of clusters are important markers of specimen atypia when considering assessment of urothelial cell clusters. CONCLUSIONS: Markers established through techniques to separate cell clusters may have wider applicability for the design and implementation of machine learning approaches for urine cytology assessment.


Asunto(s)
Carcinoma de Células Transicionales , Aprendizaje Profundo , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/patología , Carcinoma de Células Transicionales/patología , Reproducibilidad de los Resultados , Células Epiteliales/patología , Citodiagnóstico/métodos , Orina
20.
medRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873287

RESUMEN

The application of deep learning methods to spatial transcriptomics has shown promise in unraveling the complex relationships between gene expression patterns and tissue architecture as they pertain to various pathological conditions. Deep learning methods that can infer gene expression patterns directly from tissue histomorphology can expand the capability to discern spatial molecular markers within tissue slides. However, current methods utilizing these techniques are plagued by substantial variability in tissue preparation and characteristics, which can hinder the broader adoption of these tools. Furthermore, training deep learning models using spatial transcriptomics on small study cohorts remains a costly endeavor. Necessitating novel tissue preparation processes enhance assay reliability, resolution, and scalability. This study investigated the impact of an enhanced specimen processing workflow for facilitating a deep learning-based spatial transcriptomics assessment. The enhanced workflow leveraged the flexibility of the Visium CytAssist assay to permit automated H&E staining (e.g., Leica Bond) of tissue slides, whole-slide imaging at 40x-resolution, and multiplexing of tissue sections from multiple patients within individual capture areas for spatial transcriptomics profiling. Using a cohort of thirteen pT3 stage colorectal cancer (CRC) patients, we compared the efficacy of deep learning models trained on slide prepared using an enhanced workflow as compared to the traditional workflow which leverages manual tissue staining and standard imaging of tissue slides. Leveraging Inceptionv3 neural networks, we aimed to predict gene expression patterns across matched serial tissue sections, each stemming from a distinct workflow but aligned based on persistent histological structures. Findings indicate that the enhanced workflow considerably outperformed the traditional spatial transcriptomics workflow. Gene expression profiles predicted from enhanced tissue slides also yielded expression patterns more topologically consistent with the ground truth. This led to enhanced statistical precision in pinpointing biomarkers associated with distinct spatial structures. These insights can potentially elevate diagnostic and prognostic biomarker detection by broadening the range of spatial molecular markers linked to metastasis and recurrence. Future endeavors will further explore these findings to enrich our comprehension of various diseases and uncover molecular pathways with greater nuance. Combining deep learning with spatial transcriptomics provides a compelling avenue to enrich our understanding of tumor biology and improve clinical outcomes. For results of the highest fidelity, however, effective specimen processing is crucial, and fostering collaboration between histotechnicians, pathologists, and genomics specialists is essential to herald this new era in spatial transcriptomics-driven cancer research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA