Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Gen Comp Endocrinol ; 288: 113345, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812531

RESUMEN

Natural and synthetic estrogens and progestins are widely used in human and veterinary medicine and are detected in waste and surface waters. Our previous studies have clearly shown that a number of these substances targets the brain to induce the estrogen-regulated brain aromatase expression but the consequences on brain development remain virtually unexplored. The aim of the present study was therefore to investigate the effect of estradiol (E2), progesterone (P4) and norethindrone (NOR), a 19-nortestosterone progestin, on zebrafish larval neurogenesis. We first demonstrated using real-time quantitative PCR that nuclear estrogen and progesterone receptor brain expression is impacted by E2, P4 and NOR. We brought evidence that brain proliferative and apoptotic activities were differentially affected depending on the steroidal hormone studied, the concentration of steroids and the region investigated. Our findings demonstrate for the first time that steroid compounds released in aquatic environment have the capacity to disrupt key cellular events involved in brain development in zebrafish embryos further questioning the short- and long-term consequences of this disruption on the physiology and behavior of organisms.


Asunto(s)
Congéneres del Estradiol/farmacología , Estrógenos/farmacología , Sistema Nervioso/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Congéneres de la Progesterona/farmacología , Progesterona/farmacología , Pez Cebra/embriología , Animales , Embrión no Mamífero , Desarrollo Embrionario/efectos de los fármacos , Disruptores Endocrinos/farmacología , Estradiol/farmacología , Estrógenos/análogos & derivados , Estrógenos/síntesis química , Humanos , Ligandos , Nandrolona/farmacología , Sistema Nervioso/embriología , Células Neuroendocrinas/efectos de los fármacos , Células Neuroendocrinas/fisiología , Noretindrona/farmacología , Progesterona/análogos & derivados , Progesterona/síntesis química , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/agonistas , Receptores de Progesterona/metabolismo , Pez Cebra/crecimiento & desarrollo
2.
Biochim Biophys Acta ; 1849(2): 152-62, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25038582

RESUMEN

Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Asunto(s)
Anfibios/embriología , Aromatasa/fisiología , Encéfalo/embriología , Peces/embriología , Receptores de Estrógenos/fisiología , Anfibios/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Embrión no Mamífero , Disruptores Endocrinos/farmacología , Peces/genética , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuroglía/fisiología , Pez Cebra/embriología , Pez Cebra/genética
3.
Eur J Neurosci ; 38(9): 3292-301, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23981075

RESUMEN

In non-mammalian vertebrates, serotonin (5-HT)-producing neurons exist in the paraventricular organ (PVO), a diencephalic structure containing cerebrospinal fluid (CSF)-contacting neurons exhibiting 5-HT or dopamine (DA) immunoreactivity. Because the brain of the adult teleost is known for its neurogenic activity supported, for a large part, by radial glial progenitors, this study addresses the origin of newborn 5-HT neurons in the hypothalamus of adult zebrafish. In this species, the PVO exhibits numerous radial glial cells (RGCs) whose somata are located at a certain distance from the ventricle. To study relationships between RGCs and 5-HT CSF-contacting neurons, we performed 5-HT immunohistochemistry in transgenic tg(cyp19a1b-GFP) zebrafish in which RGCs are labelled with GFP under the control of the cyp19a1b promoter. We show that the somata of the 5-HT neurons are located closer to the ventricle than those of RGCs. RGCs extend towards the ventricle cytoplasmic processes that form a continuous barrier along the ventricular surface. In turn, 5-HT neurons contact the CSF via processes that cross this barrier through small pores. Further experiments using proliferating cell nuclear antigen or 5-bromo-2'-deoxyuridine indicate that RGCs proliferate and give birth to 5-HT neurons migrating centripetally instead of centrifugally as in other brain regions. Furthermore, treatment of adult zebrafish with tryptophan hydroxylase inhibitor causes a significant decrease in the number of proliferating cells in the PVO, but not in the mediobasal hypothalamus. These data point to the PVO as an intriguing region in which 5-HT appears to promote genesis of 5-HT neurons that accumulate along the brain ventricles and contact the CSF.


Asunto(s)
Células Ependimogliales/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Núcleo Hipotalámico Paraventricular/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Animales , Proliferación Celular , Células Ependimogliales/citología , Células-Madre Neurales/citología , Núcleo Hipotalámico Paraventricular/citología , Neuronas Serotoninérgicas/citología , Pez Cebra
4.
Horm Behav ; 63(2): 193-207, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22521210

RESUMEN

The brain of the adult teleost fish exhibits intense neurogenic activity and an outstanding capability for brain repair. Remarkably, the brain estrogen-synthesizing enzyme, aromatase B, is strongly expressed, particularly in adult fishes, in radial glial cells, which act as progenitors. Using zebrafish, we tested the hypothesis that estrogens affect adult neurogenesis and brain regeneration by modulating the neurogenic activity of radial glial cells. To investigate this, the estrogenic environment was modified through inhibition of aromatase activity, blockade of nuclear estrogen receptors, or estrogenic treatments. Estrogens significantly decreased cell proliferation and migration at the olfactory bulbs/telencephalon junction and in the mediobasal hypothalamus. It also appears that cell survival is reduced at the olfactory bulbs/telencephalon junction. We also developed a model of telencephalic lesion to assess the role of aromatase and estrogens in brain repair. Proliferation increased rapidly immediately after the lesion in the parenchyma of the injured telencephalon, while proliferation at the ventricular surface appeared after 48 h and peaked at 7 days. At this time, most proliferative cells express Sox2, however, none of these Sox2 positive cells correspond to aromatase B-positive radial glial cells. Interestingly, aromatase B expression was significantly reduced 48 h and 7 days after the injury, but surprisingly, at 72 h after lesion, aromatase B expression appeared de novo expressed in parenchyma cells, suggesting a role for this ectopic expression of aromatase in brain repair mechanisms. Altogether these data suggest that estrogens modulate adult, but not reparative neurogenesis, in zebrafish.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Lesiones Encefálicas/fisiopatología , Estradiol/farmacología , Neurogénesis/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Pez Cebra , Células Madre Adultas/fisiología , Factores de Edad , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Modelos Biológicos , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/fisiología , Cicatrización de Heridas/fisiología
5.
Biophys J ; 101(7): 1557-68, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21961581

RESUMEN

Transcriptional memory of transient signals can be imprinted on living systems and influence their reactivity to repeated stimulations. Although they are classically ascribed to structural chromatin rearrangements in eukaryotes, such behaviors can also rely on dynamic memory circuits with sustained self-amplification loops. However, these phenomena are either of finite duration, or conversely associated to sustained phenotypic changes. A mechanism is proposed, in which only the responsiveness of the target gene is durably reset at a higher level after primary stimulation, using the celebrated but still puzzling vitellogenesis memory effect. The basic ingredients of this system are: 1), a positive autoregulation of the estrogen receptor α gene; 2), a strongly cooperative action of the estradiol receptor on vitellogenin expression; and 3), a variant isoform of the estradiol receptor with two autonomous transcription-activating modules, one of which is signal-independent and the other, signal-dependent. Realistic quantification supports the possibility of a multistationary situation in which ligand-independent activity is unable by itself to prime the amplification loop, but can click the system over a memory threshold after a primary stimulation. This ratchet transcriptional mechanism can have developmental and ecotoxicological importance and explain lifelong imprinting of past exposures without apparent phenotypic changes before restimulation and without need for persistent chromatin modifications.


Asunto(s)
Modelos Biológicos , Transcripción Genética/genética , Vitelogénesis/genética , Animales , Humanos , Estructura Terciaria de Proteína , Receptores de Estrógenos/química , Receptores de Estrógenos/metabolismo , Activación Transcripcional/genética , Vitelogeninas/genética
6.
Front Neuroendocrinol ; 31(2): 172-92, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20116395

RESUMEN

Unlike that of mammals, the brain of teleost fish exhibits an intense aromatase activity due to the strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. In situ hybridization, immunohistochemistry and expression of GFP (green fluorescent protein) in transgenic tg(cyp19a1b-GFP) fish demonstrate that aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. Although aromatase B-positive radial glial cells are most abundant in the preoptic area and the hypothalamus, they are observed throughout the entire central nervous system and spinal cord. In agreement with the fact that brain aromatase activity is correlated to sex steroid levels, the high expression of cyp19a1b is due to an auto-regulatory loop through which estrogens and aromatizable androgens up-regulate aromatase expression. This mechanism involves estrogen receptor binding on an estrogen response element located on the cyp19a1b promoter. Cell specificity is achieved by a mandatory cooperation between estrogen receptors and unidentified glial factors. Given the emerging roles of estrogens in neurogenesis, the unique feature of the adult fish brain suggests that, in addition to classical functions on brain sexual differentiation and sexual behaviour, aromatase expression in radial glial cells could be part of the mechanisms authorizing the maintenance of a high proliferative activity in the brain of fish.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/enzimología , Animales , Aromatasa/genética , Secuencia de Bases , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Embrión no Mamífero/enzimología , Peces , Regulación de la Expresión Génica , Gónadas/enzimología , Datos de Secuencia Molecular , Neurogénesis , Filogenia , Receptores de Estrógenos/metabolismo , Estaciones del Año , Diferenciación Sexual , Conducta Sexual Animal , Esteroide 17-alfa-Hidroxilasa/metabolismo
7.
Eur J Neurosci ; 34(1): 45-56, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21692878

RESUMEN

The brain of adult teleost fish exhibits several unique and interesting features, notably an intense neurogenic activity linked to persistence of radial glial cells acting as neural progenitors, and a high aromatase activity supported by strong expression of the cyp19a1b gene. Strikingly, cyp19a1b expression is restricted to radial glial cells, suggesting that estrogens are able to modulate their activity. This raises the question of the origin, central or peripheral, of C19 androgens available for aromatization. This study aimed to investigate the activity and expression of other main steroidogenic enzymes in the brain of adult zebrafish. We demonstrate by high-performance liquid chromatography that the zebrafish brain has the ability to convert [³H]-pregnenolone into a variety of radiolabeled steroids such as 17OH-pregnenolone, dehydroepiandrosterone, androstenedione, testosterone, dihydro-testosterone, estrone, estradiol, progesterone, and dihydro- and tetrahydro-progesterone. Next, we show by in situ hybridization that messengers for key steroidogenic enzymes, such as Cyp11a1 (P450(SCC)), 3ß-Hsd, Cyp17 and Cyp19a1b, are widely expressed in the forebrain where they exhibit an overall similar pattern. By combining aromatase B immunohistochemistry with in situ hybridization, we show that cyp11a1, 3ß-hsd and cyp17 messengers are found in part in aromatase B-positive radial processes, suggesting mRNA export. This set of results provides the first demonstration that the brain of fish can produce true neurosteroids, possibly in radial glial cells. Given that radial glial cells are brain stem cells during the entire lifespan of fish, it is suggested that at least some of these neurosteroids are implicated in the persisting neurogenic process.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/enzimología , Neurotransmisores/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/fisiología , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Aromatasa/genética , Encéfalo/anatomía & histología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Femenino , Masculino , Neuroglía/citología , Neuroglía/enzimología , Neuroglía/fisiología , Neuronas/citología , Neuronas/enzimología , Neuronas/fisiología , Neurotransmisores/genética , Pregnenolona/metabolismo , ARN Mensajero/metabolismo , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/metabolismo , Proteínas de Pez Cebra/genética
8.
Glia ; 58(7): 870-88, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20155821

RESUMEN

The zebrafish has become a new model for adult neurogenesis, owing to its abundant neurogenic areas in most brain subdivisions. Radial glia-like cells, actively proliferating cells, and label-retaining progenitors have been described in these areas. In the telencephalon, this complexity is enhanced by an organization of the ventricular zone (VZ) in fast and slow-dividing domains, suggesting the existence of heterogeneous progenitor types. In this work, we studied the expression of various transgenic or immunocytochemical markers for glial cells (gfap:gfp, cyp19a1b:gfp, BLBP, and S100beta), progenitors (nestin:gfp and Sox2), and neuroblasts (PSA-NCAM) in cycling progenitors of the adult zebrafish telencephalon (identified by expression of proliferating cell nuclear antigen (PCNA), MCM5, or bromodeoxyuridine incorporation). We demonstrate the existence of distinct populations of dividing cells at the adult telencephalic VZ. Progenitors of the overall slow-cycling domains express high levels of Sox2 and nestin:gfp as well as all glial markers tested. In contrast, domains with an overall fast division rate are characterized by low or missing expression of glial markers. PCNA-positive cells in fast domains further display a morphology distinct from radial glia and co-express PSA-NCAM, suggesting that they are early neuronal precursors. In addition, the VZ contains cycling progenitors that express neither glial markers nor nestin:gfp, but are positive for Sox2 and PSA-NCAM, identifying them as committed neuroblasts. On the basis of the marker gene expression and distinct cell morphologies, we propose a classification for the dividing cell states at the zebrafish adult telencephalic VZ.


Asunto(s)
Diferenciación Celular/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Células Madre/citología , Telencéfalo/citología , Pez Cebra/anatomía & histología , Animales , Animales Modificados Genéticamente , Biomarcadores/análisis , Biomarcadores/metabolismo , División Celular/fisiología , Proliferación Celular , Proteínas de Filamentos Intermediarios/análisis , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Ventrículos Laterales , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Molécula L1 de Adhesión de Célula Nerviosa/análisis , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción SOX/análisis , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Ácidos Siálicos/análisis , Ácidos Siálicos/genética , Ácidos Siálicos/metabolismo , Células Madre/clasificación , Células Madre/fisiología , Telencéfalo/fisiología , Pez Cebra/fisiología , Proteínas de Pez Cebra/análisis , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Eur J Neurosci ; 32(12): 2105-15, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21143665

RESUMEN

In contrast to mammals, teleost fish have a very labile genetic sex determination. Sex differentiation is influenced by a combination of hormonal, social and environmental factors and teleost fishes exhibit many examples of hermaphroditism. This means that the brain of fish is not irreversibly sexualized early in life. This review aims at highlighting some unique features of fish that may explain their brain sexual plasticity. Unlike mammals, in which brain aromatase activity decreases after birth, adult teleosts exhibit an intense aromatase activity due to strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. Interestingly, aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. In agreement with the fact that brain aromatase activity is correlated with sex steroid levels, the high expression of cyp19a1b is due to an autoregulatory loop through which estrogens and aromatizable androgens upregulate aromatase expression. Given the well-established roles of estrogens and aromatase on brain sexualization, these features suggest that the brain of fish conserves properties of embryonic mammalian brain throughout life - high neurogenic activity and high aromatase expression in progenitor cells correlated with sex steroid levels. The permanent dialogue between the brain and the gonad would permit sex changes and thus the emergence of a variety of reproductive strategies. Other hypotheses are also discussed.


Asunto(s)
Aromatasa/metabolismo , Peces/anatomía & histología , Peces/fisiología , Plasticidad Neuronal/fisiología , Diferenciación Sexual/fisiología , Andrógenos/metabolismo , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Estrógenos/metabolismo , Humanos , Neurogénesis/fisiología , Caracteres Sexuales , Procesos de Determinación del Sexo/fisiología
10.
Gene Expr Patterns ; 20(1): 42-54, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26611722

RESUMEN

Adult fish exhibit a strong neurogenic capacity due to the persistence of radial glial cells. In zebrafish, radial glial cells display well-established markers such as the estrogen-synthesizing enzyme (AroB) and the brain lipid binding protein (Blbp), which is known to strongly bind omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). While Blpb is mainly described in the telencephalon of adult zebrafish, its expression in the remaining regions of the brain is poorly documented. The present study was designed to further investigate Blbp expression in the brain, its co-expression with AroB, and its link with radial glial cells proliferation in zebrafish. We generated a complete and detailed mapping of Blbp expression in the whole brain and show its complete co-expression with AroB, except in some tectal and hypothalamic regions. By performing PCNA and Blbp immunohistochemistry on cyp19a1b-GFP (AroB-GFP) fish, we also demonstrated preferential Blbp expression in proliferative radial glial cells in almost all regions studied. To our knowledge, this is the first complete and detailed mapping of Blbp-expressing cells showing strong association between Blbp and radial glial cell proliferation in the adult brain of fish. Given that zebrafish is now recognized models for studying neurogenesis and brain repair, our data provide detailed characterization of Blbp in the entire brain and open up a broad field of research investigating the role of omega-3 polyunsaturated fatty acids in neural stem cell activity in fish.


Asunto(s)
Aromatasa/genética , Encéfalo/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Pez Cebra/genética , Animales , Aromatasa/metabolismo , Mapeo Encefálico , Proliferación Celular , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Masculino , Neuroglía/citología , Neuroglía/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
11.
Front Neurosci ; 10: 112, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047331

RESUMEN

Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B), expressed in the brain, using three different in situ/in vivo strategies: (1) Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols; (2) Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus); and (3) Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay) at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF, or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα). Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP) did not show estrogenic activity in our model.

12.
Endocrinology ; 143(11): 4249-58, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12399419

RESUMEN

The aim of this study was to examine whether the expression levels of mRNA of the three estrogen receptor (ER) subtypes, ERalpha, ERbeta, and truncated ER product-1 (TERP-1) found in the rat pituitary gland were modified during gestation, lactation, and postlactation periods. By using relative quantitative RT-PCR, we found that ERalpha mRNA significantly peaked in midpregnancy. However, the ERalpha protein level remained constant. ERbeta gene expression did not change throughout pregnancy, suggesting that it was not related to estradiol levels during this reproductive period. In contrast, both TERP-1 mRNA and protein levels dramatically increased throughout the second half of gestation, being faintly detectable in early pregnancy. TERP-1 expression was rapidly reversed by lactation, whereas neither pituitary ERalpha nor ERbeta relative levels were significantly altered. In addition, pup removal for 24-96 h on d 9 postpartum significantly reduced the expression of both ERalpha and ERbeta mRNA compared with that in lactating animals, but the expression of TERP-1 mRNA was no longer detected. Collectively, our data indicate that 1) TERP-1, ERalpha, and ERbeta expression levels are differentially regulated in the pituitary; 2) TERP-1 is variably expressed depending on the hormonal environment related to the estrous cycle, pregnancy, and lactation; and 3) TERP-1/ERalpha ratios dramatically change depending on reproductive periods, suggesting a critical role for TERP-1 in reproductive events.


Asunto(s)
Expresión Génica , Lactancia/fisiología , Preñez/fisiología , Receptores de Estrógenos/genética , Animales , Western Blotting , Estradiol/sangre , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Ciclo Estral , Femenino , Edad Gestacional , Hipófisis/metabolismo , Embarazo , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Destete
13.
PLoS One ; 6(11): e28375, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22140581

RESUMEN

In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr) has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.


Asunto(s)
Encéfalo/metabolismo , Estrógenos/farmacología , Neuronas/metabolismo , Receptores de Progesterona/genética , Células Madre/metabolismo , Regulación hacia Arriba/genética , Pez Cebra/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Estradiol/farmacología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Neuroglía/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Área Preóptica/citología , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Progesterona/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
14.
Front Neurosci ; 5: 137, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22194715

RESUMEN

Neurosteroids are defined as steroids de novo synthesized in the central nervous system. While the production of neurosteroids is well documented in mammals and amphibians, there is less information about teleosts, the largest group of fish. Teleosts have long been known for their high brain aromatase and 5α-reductase activities, but recent data now document the capacity of the fish brain to produce a large variety of sex steroids. This article aims at reviewing the available information regarding expression and/or activity of the main steroidogenic enzymes in the brain of fish. In addition, the distribution of estrogen, androgen, and progesterone nuclear receptors is documented in relation with the potential sites of production of neurosteroids. Interestingly, radial glial cells acting as neuronal progenitors, appear to be a potential source of neurosteroids, but also a target for centrally and/or peripherally produced steroids.

15.
J Comp Neurol ; 518(24): 4855-76, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21031556

RESUMEN

Unlike that of mammals, the brain of adult teleost fish exhibits an intense and widespread neurogenic activity as a result of the persistence of radial glial cells acting as neural progenitors throughout life. Because chemokines, notably CXCL12, and their receptors, such as CXCR4, play key roles in mammalian embryonic neurogenesis, we investigated Cxcr4 and Cxcl12 expressions in the brain of adult zebrafish and their potential relationships with cell proliferation. Cxcr4 expression was found to be restricted to radial glial cells in the adult zebrafish, where it is co-expressed with established radial glial cell markers, such as brain lipid-binding protein (Blbp) or the estrogen-synthesizing enzyme aromatase B (Cyp19a1b). Double stainings combining proliferating cell nuclear antigen (PCNA) and Cxcr4 immunolabelling indicated that there is no obvious association between Cxcr4 expression and radial glial cell proliferation. Interestingly, cxcl12a messengers were detected in ventricular regions, in cells corresponding to aromatase B-immunoreactive radial glial cells. Altogether, our data demonstrate Cxcl12 and Cxcr4 expression in radial glial cells of the brain of adult zebrafish, supporting important roles for the Cxcl12/Cxcr4 pair in brain development and functioning.


Asunto(s)
Encéfalo/metabolismo , Quimiocina CXCL12/biosíntesis , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Receptores CXCR4/biosíntesis , Animales , Aromatasa/biosíntesis , Aromatasa/genética , Biomarcadores/metabolismo , Encéfalo/citología , Proliferación Celular , Quimiocina CXCL12/genética , Proteínas de Unión a Ácidos Grasos/biosíntesis , Proteínas de Unión a Ácidos Grasos/genética , Células-Madre Neurales/citología , Neurogénesis/genética , Neuroglía/citología , Plasticidad Neuronal/genética , Antígeno Nuclear de Célula en Proliferación/fisiología , Receptores CXCR4/genética , Pez Cebra , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética
17.
J Soc Biol ; 203(1): 29-38, 2009.
Artículo en Francés | MEDLINE | ID: mdl-19358809

RESUMEN

In contrast to other vertebrates, in which the adult brain shows limited adult neurogenesis, teleost fish exhibit an unparalleled capacity to generate new neurons as adults, suggesting that their brains present a highly permissive environment for the maintenance and proliferation of adult progenitors. Here, we examine the hypothesis that one of the factors permitting establishment of this favourable environment is estradiol. Indeed, recent data showed that radial glial cells strongly expressed one of two aromatase duplicated genes. Aromatase is the estrogen-synthesizing enzyme and this observation is of great interest, given that radial glial cells are progenitor cells capable of generating new neurons. Given the well documented roles of estrogens on cell fate, and notably on cell proliferation, these data suggest that estradiol could be involved in maintaining and/or activating these progenitors. Examination of recent data in birds and mammals suggests that the situation in fish could well be an exaggeration of a more general mechanism implicating estrogens in neurogenesis. Indeed, there is accumulating evidence that estrogens are involved in embryonic, adult or reparative neurogenesis in other vertebrates, notably in mammals.


Asunto(s)
Estrógenos/fisiología , Neurogénesis/fisiología , Pez Cebra/fisiología , Animales , Aromatasa/fisiología , Aves/fisiología , Encéfalo/citología , Encéfalo/enzimología , División Celular , Estrógenos/biosíntesis , Mamíferos/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuroglía/enzimología , Neuronas/citología , Neuronas/enzimología , Regeneración , Especificidad de la Especie , Células Madre/citología , Células Madre/enzimología , Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA