Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(6): 3579-3585, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35088772

RESUMEN

Metal-chelating polymers play a key role in rare-earth element (REE) extraction and separation processes. Often, these processes occur in aqueous solution, but the interactions among water, polymer, and REE are largely under-investigated in these applications. To probe these interactions, we synthesized a series of poly(amino acid acrylamide)s with systematically varied hydrophobicity around a consistent chelating group (carboxylate). We then measured the ΔH of Eu3+ chelation as a function of temperature across the polymer series using isothermal titration calorimetry (ITC) to give the change in heat capacity (ΔCP). We observed an order of magnitude variation in ΔCP (39-471 J mol1 K-1) with changes in the hydrophobicity of the polymer. Atomistic simulations of the polymer-metal-water interactions revealed greater Eu3+ and polymer desolvation when binding to the more hydrophobic polymers. These combined experimental and computational results demonstrate that metal binding in aqueous solution can be modulated not only by directly modifying the chelating groups, but also by altering the molecular environment around the chelating site, thus suggesting a new design principle for developing increasingly effective metal-chelating materials.


Asunto(s)
Polímeros , Calorimetría , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Temperatura , Termodinámica
2.
J Chem Phys ; 153(12): 124711, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003711

RESUMEN

Improving the efficiency of photo-electrocatalytic cells depends on controlling the rates of interfacial electron transfer to promote the formation of long-lived charge separated states. Ultimately, for efficient catalytic assemblies to see widespread implementation, repeated electron transfer in the absence of charge recombination needs to be realized. In this study, a series of manganese-based transition metal complexes known to undergo charge transfer-induced spin crossover are employed to study how significant increases in inner-sphere reorganization energy affect the rates of interfacial electron transfer. Each complex is characterized by transient spectroscopic and electrochemical methods to calculate the rate of electron transfer to a model chromophore anchored to the surface of a TiO2 film. Likewise, open-circuit voltage decay measurements were used to determine the voltage-dependent lifetime of injected electrons in TiO2 in the presence of each complex. To further characterize the rates of electronic recombination, density functional theory was used to calculate the inner-sphere and outer-sphere reorganization energy for each complex. These calculations were then combined with classical Marcus theory to determine the theoretical rate of back-electron transfer from the TiO2 conduction band. These results show that, in model complexes, a significant reduction in the recombination rate constant is achieved for complexes possessing a significant inner-sphere reorganization energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA