Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 31(4): 1074-1087, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36793210

RESUMEN

While a number of methods exist to investigate CRISPR off-target (OT) editing, few have been compared head-to-head in primary cells after clinically relevant editing processes. Therefore, we compared in silico tools (COSMID, CCTop, and Cas-OFFinder) and empirical methods (CHANGE-Seq, CIRCLE-Seq, DISCOVER-Seq, GUIDE-Seq, and SITE-Seq) after ex vivo hematopoietic stem and progenitor cell (HSPC) editing. We performed editing using 11 different gRNAs complexed with Cas9 protein (high-fidelity [HiFi] or wild-type versions), then performed targeted next-generation sequencing of nominated OT sites identified by in silico and empirical methods. We identified an average of less than one OT site per guide RNA (gRNA) and all OT sites generated using HiFi Cas9 and a 20-nt gRNA were identified by all OT detection methods with the exception of SITE-seq. This resulted in high sensitivity for the majority of OT nomination tools and COSMID, DISCOVER-Seq, and GUIDE-Seq attained the highest positive predictive value (PPV). We found that empirical methods did not identify OT sites that were not also identified by bioinformatic methods. This study supports that refined bioinformatic algorithms could be developed that maintain both high sensitivity and PPV, thereby enabling more efficient identification of potential OT sites without compromising a thorough examination for any given gRNA.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Antígenos CD34 , Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , ARN Guía de Sistemas CRISPR-Cas
2.
J Reprod Dev ; 68(5): 307-311, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-35831117

RESUMEN

Genetically engineered animals can be produced quickly using genome editing technology. A new electroporation technique, technique for animal knockout system by electroporation (TAKE), aids in the production of genome-edited animals by introducing nucleases into intact embryos using electroporation instead of microinjection. It is difficult to confirm nuclease delivery into embryos after electroporation using the conventional TAKE method. We previously reported the successful visualization of fluorescently-labeled tracrRNA in embryos after electroporation Cas9 paired with the crRNA:tracrRNA-ATTO550 duplex. However, the amount of fluorescence signal from labeled tracrRNA in embryos did not correlate with the genome editing rate of the offspring. This study examined the visualization of Cas9 protein in embryos after electroporation and its correlation with the genome editing rate of the offspring using a fluorescent Cas9 fusion protein. The fluorescent Cas9 protein was observed in all embryos that survived following electroporation. We found that the efficiency of Cas9 protein delivery into embryos via electroporation depended on the pulse length. Furthermore, we demonstrated that the amount of fluorescent Cas9 protein detected in the embryos correlated with the genome editing efficiency of the embryos. These data indicate that the TAKE method using fluorescently-labeled nucleases can be used to optimize the delivery conditions and verify nuclease delivery into individual embryos prior to embryo transfer for the efficient production of genome-edited animals.


Asunto(s)
Proteína 9 Asociada a CRISPR , Edición Génica , Animales , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Electroporación/métodos , Edición Génica/métodos , Ratones , Microinyecciones
3.
Nucleic Acids Res ; 48(9): 5037-5053, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32315032

RESUMEN

CRISPR RNA-guided endonucleases (RGEs) cut or direct activities to specific genomic loci, yet each has off-target activities that are often unpredictable. We developed a pair of simple in vitro assays to systematically measure the DNA-binding specificity (Spec-seq), catalytic activity specificity (SEAM-seq) and cleavage efficiency of RGEs. By separately quantifying binding and cleavage specificity, Spec/SEAM-seq provides detailed mechanistic insight into off-target activity. Feature-based models generated from Spec/SEAM-seq data for SpCas9 were consistent with previous reports of its in vitro and in vivo specificity, validating the approach. Spec/SEAM-seq is also useful for profiling less-well characterized RGEs. Application to an engineered SpCas9, HiFi-SpCas9, indicated that its enhanced target discrimination can be attributed to cleavage rather than binding specificity. The ortholog ScCas9, on the other hand, derives specificity from binding to an extended PAM. The decreased off-target activity of AsCas12a (Cpf1) appears to be primarily driven by DNA-binding specificity. Finally, we performed the first characterization of CasX specificity, revealing an all-or-nothing mechanism where mismatches can be bound, but not cleaved. Together, these applications establish Spec/SEAM-seq as an accessible method to rapidly and reliably evaluate the specificity of RGEs, Cas::gRNA pairs, and gain insight into the mechanism and thermodynamics of target discrimination.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Acidaminococcus/enzimología , Disparidad de Par Base , Emparejamiento Base , Proteínas Asociadas a CRISPR/genética , ADN/química , ADN/metabolismo , División del ADN , Deltaproteobacteria/enzimología , Endodesoxirribonucleasas/genética , Mutación , Proteína Homeótica Nanog/genética , Unión Proteica , ARN/química , Técnica SELEX de Producción de Aptámeros , Análisis de Secuencia de ADN , Especificidad por Sustrato
4.
Nucleic Acids Res ; 45(4): 1673-1686, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28126921

RESUMEN

Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets.


Asunto(s)
Carbono/metabolismo , Genómica , Metabolómica , Proteómica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genómica/métodos , Ingeniería Metabólica/métodos , Metaboloma , Metabolómica/métodos , Modelos Biológicos , Proteoma , Proteómica/métodos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Estrés Fisiológico , Transcriptoma
5.
Nucleic Acids Res ; 44(16): 7896-910, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27235416

RESUMEN

The widely conserved protein CsrA (carbon storage regulator A) globally regulates bacterial gene expression at the post-transcriptional level. In many species, CsrA activity is governed by untranslated sRNAs, CsrB and CsrC in Escherichia coli, which bind to multiple CsrA dimers, sequestering them from lower affinity mRNA targets. Both the synthesis and turnover of CsrB/C are regulated. Their turnover requires the housekeeping endonuclease RNase E and is activated by the presence of a preferred carbon source via the binding of EIIA(Glc) of the glucose transport system to the GGDEF-EAL domain protein CsrD. We demonstrate that the CsrB 3' segment contains the features necessary for CsrD-mediated decay. RNase E cleavage in an unstructured segment located immediately upstream from the intrinsic terminator is necessary for subsequent degradation to occur. CsrA stabilizes CsrB against RNase E cleavage by binding to two canonical sites adjacent to the necessary cleavage site, while CsrD acts by overcoming CsrA-mediated protection. Our genetic, biochemical and structural studies establish a molecular framework for sRNA turnover by the CsrD-RNase E pathway. We propose that CsrD evolution was driven by the selective advantage of decoupling Csr sRNA decay from CsrA binding, connecting it instead to the availability of a preferred carbon source.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/metabolismo , ARN Bacteriano/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Endorribonucleasas/metabolismo , Mutación/genética , Estabilidad del ARN/genética , ARN Bacteriano/genética , ARN Largo no Codificante/genética , Regiones Terminadoras Genéticas
6.
Mol Microbiol ; 99(4): 627-39, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26507976

RESUMEN

Csr is a conserved global regulatory system, which uses the sequence-specific RNA-binding protein CsrA to activate or repress gene expression by binding to mRNA and altering translation, stability and/or transcript elongation. In Escherichia coli, CsrA activity is regulated by two sRNAs, CsrB and CsrC, which bind to multiple CsrA dimers, thereby sequestering this protein away from its mRNA targets. Turnover of CsrB/C sRNAs is tightly regulated by a GGDEF-EAL domain protein, CsrD, which targets them for cleavage by RNase E. Here, we show that EIIA(Glc) of the glucose-specific PTS system is also required for the normal decay of these sRNAs and that it acts by binding to the EAL domain of CsrD. Only the unphosphorylated form of EIIA(Glc) bound to CsrD in vitro and was capable of activating CsrB/C turnover in vivo. Genetic studies confirmed that this mechanism couples CsrB/C sRNA decay to the availability of a preferred carbon source. These findings reveal a new physiological influence on the workings of the Csr system, a novel function for the EAL domain, and an important new way in which EIIA(Glc) shapes global regulatory circuitry in response to nutritional status.


Asunto(s)
Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Estabilidad del ARN , ARN Bacteriano/metabolismo , ARN Largo no Codificante/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Estabilidad del ARN/genética , ARN Bacteriano/genética , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
7.
EMBO J ; 32(21): 2872-83, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24056837

RESUMEN

A hierarchical control of fimbrial gene expression limits laboratory grown cultures of Salmonella enterica serovar typhimurium (S. typhimurium) to the production of type I fimbriae encoded by the fimAICDHF operon. Here we show that an unlikely culprit, namely the 5'-untranslated region (5'-UTR) of a messenger (m)RNA, coordinated the regulation. Binding of CsrA to the 5'-UTR of the pefACDEF transcript was required for expression of plasmid-encoded fimbriae. The 5'-UTR of the fimAICDHF transcript cooperated with two small untranslated RNAs, termed CsrB and CsrC, in antagonizing the activity of the RNA binding protein CsrA. Through this post-transcriptional mechanism, the 5'-UTR of the fimAICDHF transcript prevented production of PefA, the major structural subunit of plasmid-encoded fimbriae. This regulatory mechanism limits the costly expression of plasmid-encoded fimbriae to host environments in a mouse model. Collectively, our data suggest that the 5'-UTR of an mRNA coordinates a hierarchical control of fimbrial gene expression in S. typhimurium.


Asunto(s)
Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica , Salmonella typhimurium/genética , Animales , Escherichia coli/genética , Femenino , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Ratones , Ratones Endogámicos C57BL , ARN Bacteriano/genética
8.
J Bacteriol ; 198(21): 3000-3015, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27551019

RESUMEN

Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status. IMPORTANCE: Csr (Rsm) noncoding small RNAs (sRNAs) CsrB and CsrC of Escherichia coli use molecular mimicry to sequester the RNA binding protein CsrA (RsmA) away from lower-affinity mRNA targets, thus eliciting major shifts in the bacterial lifestyle. CsrB/C transcription and turnover are activated by carbon metabolism products (e.g., formate and acetate) and by a preferred carbon source (glucose), respectively. We show that cAMP-CRP, a mediator of classical catabolite repression, inhibits csrC transcription by binding to the upstream region of this gene and also inhibits csrB transcription, apparently indirectly. We propose that glucose availability activates pathways for both synthesis and turnover of CsrB/C, thus shaping the dynamics of global signaling in response to the nutritional environment by poising CsrB/C sRNA levels for rapid response.


Asunto(s)
Represión Catabólica , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
9.
Mol Microbiol ; 92(5): 945-58, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24708042

RESUMEN

In Escherichia coli, activity of the global regulatory RNA binding protein CsrA is antagonized by two non-coding sRNAs, CsrB and CsrC, which sequester it away from its lower affinity mRNA targets. Transcription of csrB/C requires the BarA-UvrY two component signal transduction system, which responds to short chain carboxylates. We show that two DEAD-box RNA helicases, DeaD and SrmB, activate csrB/C expression by different pathways. DeaD facilitates uvrY translation by counteracting the inhibitory effect of long distance base-pairing between the uvrY mRNA leader and coding region, while SrmB does not affect UvrY or UvrY-phosphate levels. Contrary to the prevailing notion that these helicases act primarily at low temperatures, DeaD and SrmB activated csrB expression over a wide temperature range. High-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) revealed in vivo interactions of DeaD with 39 mRNAs, including those of uvrY and 9 other regulatory genes. Studies on the expression of several of the identified genes revealed regulatory effects of DeaD in all cases and diverse temperature response patterns. Our findings uncover an expanded regulatory role for DeaD, which is mediated through novel mRNA targets, important global regulators and under physiological conditions that were considered to be incompatible with its function.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , ARN Mensajero/genética , Temperatura
10.
Mol Microbiol ; 87(4): 851-66, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23305111

RESUMEN

Csr is a conserved global regulatory system that controls expression of several hundred Escherichia coli genes. CsrA protein represses translation of numerous genes by binding to mRNA and inhibiting ribosome access. CsrA also activates gene expression, although an activation mechanism has not been reported. CsrA activates flhDC expression, encoding the master regulator of flagellum biosynthesis and chemotaxis, by stabilizing the mRNA. Computer modelling, gel mobility shift and footprint analyses identified two CsrA binding sites extending from positions 1-12 (BS1) and 44-55 (BS2) of the 198 nt flhDC leader transcript. flhD'-'lacZ expression was reduced by mutations in csrA and/or the CsrA binding sites. The position of BS1 suggested that bound CsrA might inhibit 5' end-dependent RNase E cleavage of flhDC mRNA. Consistent with this hypothesis, CsrA protected flhDC leader RNA from RNase E cleavage in vitro and protection depended on BS1 and BS2. Primer extension studies identified flhDC decay intermediates in vivo that correspond to in vitro RNase E cleavage sites. Deletion of these RNase E cleavage sites resulted in increased flhD'-'lacZ expression. Data from mRNA decay studies and quantitative primer extension assays support a model in which bound CsrA activates flhDC expression by inhibiting the 5' end-dependent RNase E cleavage pathway.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/genética , Regiones no Traducidas 5' , Secuencia de Bases , Sitios de Unión , Endorribonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Datos de Secuencia Molecular , Operón , Unión Proteica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transactivadores/química , Transactivadores/metabolismo
11.
Nat Commun ; 15(1): 111, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169468

RESUMEN

Genome editing by homology directed repair (HDR) is leveraged to precisely modify the genome of therapeutically relevant hematopoietic stem and progenitor cells (HSPCs). Here, we present a new approach to increasing the frequency of HDR in human HSPCs by the delivery of an inhibitor of 53BP1 (named "i53") as a recombinant peptide. We show that the use of i53 peptide effectively increases the frequency of HDR-mediated genome editing at a variety of therapeutically relevant loci in HSPCs as well as other primary human cell types. We show that incorporating the use of i53 recombinant protein allows high frequencies of HDR while lowering the amounts of AAV6 needed by 8-fold. HDR edited HSPCs were capable of long-term and bi-lineage hematopoietic reconstitution in NSG mice, suggesting that i53 recombinant protein might be safely integrated into the standard CRISPR/AAV6-mediated genome editing protocol to gain greater numbers of edited cells for transplantation of clinically meaningful cell populations.


Asunto(s)
Edición Génica , Trasplante de Células Madre Hematopoyéticas , Humanos , Animales , Ratones , Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , Proteínas Recombinantes/metabolismo , Péptidos/metabolismo , Sistemas CRISPR-Cas
12.
Blood Adv ; 8(7): 1820-1833, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38096800

RESUMEN

ABSTRACT: Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αß and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.


Asunto(s)
Proteínas de Homeodominio , Inmunodeficiencia Combinada Grave , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , VDJ Recombinasas
13.
Environ Microbiol ; 15(2): 313-24, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22672726

RESUMEN

Originally described as a repressor of gene expression in the stationary phase of growth, CsrA (RsmA) regulates primary and secondary metabolic pathways, biofilm formation, motility, virulence circuitry of pathogens, quorum sensing and stress response systems by binding to conserved sequences in its target mRNAs and altering their translation and/or turnover. While the binding of CsrA to RNA is understood at an atomic level, new mechanisms of gene activation and repression by this protein are still emerging. In the γ-proteobacteria, small non-coding RNAs (sRNAs) use molecular mimicry to sequester multiple CsrA dimers away from mRNA. In contrast, the FliW protein of Bacillus subtilis inhibits CsrA activity by binding to this protein, thereby establishing a checkpoint in flagellum morphogenesis. Turnover of CsrB and CsrC sRNAs in Escherichia coli requires a specificity protein of the GGDEF-EAL domain superfamily, CsrD, in addition to the housekeeping nucleases RNase E and PNPase. The Csr system of E. coli contains extensive autoregulatory circuitry, which governs the expression and activity of CsrA. Interaction of the Csr system with transcriptional regulatory networks results in a variety of complex response patterns. This minireview will highlight basic principles and new insights into the workings of these complex eubacterial regulatory systems.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Unión Proteica , Percepción de Quorum/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética
14.
Nat Commun ; 14(1): 3957, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37402755

RESUMEN

Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is a destructive citrus disease worldwide. Generating disease-resistant cultivars is the most effective, environmentally friendly and economic approach for disease control. However, citrus traditional breeding is lengthy and laborious. Here, we develop transgene-free canker-resistant Citrus sinensis lines in the T0 generation within 10 months through transformation of embryogenic protoplasts with Cas12a/crRNA ribonucleoprotein to edit the canker susceptibility gene CsLOB1. Among the 39 regenerated lines, 38 are biallelic/homozygous mutants, demonstrating a 97.4% biallelic/homozygous mutation rate. No off-target mutations are detected in the edited lines. Canker resistance of the cslob1-edited lines results from both abolishing canker symptoms and inhibiting Xcc growth. The transgene-free canker-resistant C. sinensis lines have received regulatory approval by USDA APHIS and are exempted from EPA regulation. This study provides a sustainable and efficient citrus canker control solution and presents an efficient transgene-free genome-editing strategy for citrus and other crops.


Asunto(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus sinensis/genética , ARN Guía de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Citrus/genética , Xanthomonas/genética , Enfermedades de las Plantas/genética
15.
Genome Biol ; 24(1): 102, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37122009

RESUMEN

BACKGROUND: Cas12a (formerly known as Cpf1), the class II type V CRISPR nuclease, has been widely used for genome editing in mammalian cells and plants due to its distinct characteristics from Cas9. Despite being one of the most robust Cas12a nucleases, LbCas12a in general is less efficient than SpCas9 for genome editing in human cells, animals, and plants. RESULTS: To improve the editing efficiency of LbCas12a, we conduct saturation mutagenesis in E. coli and identify 1977 positive point mutations of LbCas12a. We selectively assess the editing efficiency of 56 LbCas12a variants in human cells, identifying an optimal LbCas12a variant (RVQ: G146R/R182V/E795Q) with the most robust editing activity. We further test LbCas12a-RV, LbCas12a-RRV, and LbCas12a-RVQ in plants and find LbCas12a-RV has robust editing activity in rice and tomato protoplasts. Interestingly, LbCas12a-RRV, resulting from the stacking of RV and D156R, displays improved editing efficiency in stably transformed rice and poplar plants, leading to up to 100% editing efficiency in T0 plants of both plant species. Moreover, this high-efficiency editing occurs even at the non-canonical TTV PAM sites. CONCLUSIONS: Our results demonstrate that LbCas12a-RVQ is a powerful tool for genome editing in human cells while LbCas12a-RRV confers robust genome editing in plants. Our study reveals the tremendous potential of these LbCas12a variants for advancing precision genome editing applications across a wide range of organisms.


Asunto(s)
Edición Génica , Oryza , Animales , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas , Escherichia coli/genética , Mutagénesis , Endonucleasas/genética , Endonucleasas/metabolismo , Oryza/genética , Oryza/metabolismo , Genoma de Planta , Mamíferos/genética
16.
Stem Cells Transl Med ; 12(6): 365-378, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37221451

RESUMEN

Prior to use, newly generated induced pluripotent stem cells (iPSC) should be thoroughly validated. While excellent validation and release testing assays designed to evaluate potency, genetic integrity, and sterility exist, they do not have the ability to predict cell type-specific differentiation capacity. Selection of iPSC lines that have limited capacity to produce high-quality transplantable cells, places significant strain on valuable clinical manufacturing resources. The purpose of this study was to determine the degree and root cause of variability in retinal differentiation capacity between cGMP-derived patient iPSC lines. In turn, our goal was to develop a release testing assay that could be used to augment the widely used ScoreCard panel. IPSCs were generated from 15 patients (14-76 years old), differentiated into retinal organoids, and scored based on their retinal differentiation capacity. Despite significant differences in retinal differentiation propensity, RNA-sequencing revealed remarkable similarity between patient-derived iPSC lines prior to differentiation. At 7 days of differentiation, significant differences in gene expression could be detected. Ingenuity pathway analysis revealed perturbations in pathways associated with pluripotency and early cell fate commitment. For example, good and poor producers had noticeably different expressions of OCT4 and SOX2 effector genes. QPCR assays targeting genes identified via RNA sequencing were developed and validated in a masked fashion using iPSCs from 8 independent patients. A subset of 14 genes, which include the retinal cell fate markers RAX, LHX2, VSX2, and SIX6 (all elevated in the good producers), were found to be predictive of retinal differentiation propensity.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Diferenciación Celular , Retina , Organoides
17.
Nat Biotechnol ; 41(4): 500-512, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36424489

RESUMEN

Programmable genome integration of large, diverse DNA cargo without DNA repair of exposed DNA double-strand breaks remains an unsolved challenge in genome editing. We present programmable addition via site-specific targeting elements (PASTE), which uses a CRISPR-Cas9 nickase fused to both a reverse transcriptase and serine integrase for targeted genomic recruitment and integration of desired payloads. We demonstrate integration of sequences as large as ~36 kilobases at multiple genomic loci across three human cell lines, primary T cells and non-dividing primary human hepatocytes. To augment PASTE, we discovered 25,614 serine integrases and cognate attachment sites from metagenomes and engineered orthologs with higher activity and shorter recognition sequences for efficient programmable integration. PASTE has editing efficiencies similar to or exceeding those of homology-directed repair and non-homologous end joining-based methods, with activity in non-dividing cells and in vivo with fewer detectable off-target events. PASTE expands the capabilities of genome editing by allowing large, multiplexed gene insertion without reliance on DNA repair pathways.


Asunto(s)
Sistemas CRISPR-Cas , Integrasas , Humanos , Sistemas CRISPR-Cas/genética , División del ADN , Edición Génica , ADN/genética , Reparación del ADN por Unión de Extremidades/genética
18.
J Bacteriol ; 194(1): 79-89, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22037401

RESUMEN

The RNA binding protein CsrA (RsmA) represses biofilm formation in several proteobacterial species. In Escherichia coli, it represses the production of the polysaccharide adhesin poly-ß-1,6-N-acetyl-D-glucosamine (PGA) by binding to the pgaABCD mRNA leader, inhibiting pgaA translation, and destabilizing this transcript. In addition, CsrA represses genes responsible for the synthesis of cyclic di-GMP, an activator of PGA production. Here we determined that CsrA also represses NhaR, a LysR-type transcriptional regulator which responds to elevated [Na(+)] and alkaline pH and activates the transcription of the pgaABCD operon. Gel shift studies revealed that CsrA binds at two sites in the 5' untranslated segment of nhaR, one of which overlaps the Shine-Dalgarno sequence. An epitope-tagged NhaR protein, expressed from the nhaR chromosomal locus, and an nhaR posttranscriptional reporter fusion (PlacUV5-nhaR'-'lacZ) both showed robust repression by CsrA. Northern blotting revealed a complex transcription pattern for the nhaAR locus. Nevertheless, CsrA did not repress nhaR mRNA levels. Toeprinting assays showed that CsrA competes effectively with the ribosome for binding to the translation initiation region of nhaR. Together, these findings indicate that CsrA blocks nhaR translation. Epistasis studies with a pgaA-lacZ transcriptional fusion confirmed a model in which CsrA indirectly represses pgaABCD transcription via NhaR. We conclude that CsrA regulates the horizontally acquired pgaABCD operon and PGA biosynthesis at multiple levels. Furthermore, nhaR repression exemplifies an expanding role for CsrA as a global regulator of stress response systems.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Porinas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Sodio , Factores de Transcripción/genética , beta-Glucanos/metabolismo
19.
Mol Microbiol ; 80(6): 1561-80, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21488981

RESUMEN

CsrA protein regulates important cellular processes by binding to target mRNAs and altering their translation and/or stability. In Escherichia coli, CsrA binds to sRNAs, CsrB and CsrC, which sequester CsrA and antagonize its activity. Here, mRNAs for relA, spoT and dksA of the stringent response system were found among 721 different transcripts that copurified with CsrA. Many of the transcripts that copurified with CsrA were previously determined to respond to ppGpp and/or DksA. We examined multiple regulatory interactions between the Csr and stringent response systems. Most importantly, DksA and ppGpp robustly activated csrB/C transcription (10-fold), while they modestly activated csrA expression. We propose that CsrA-mediated regulation is relieved during the stringent response. Gel shift assays confirmed high affinity binding of CsrA to relA mRNA leader and weaker interactions with dksA and spoT. Reporter fusions, qRT-PCR and immunoblotting showed that CsrA repressed relA expression, and (p)ppGpp accumulation during stringent response was enhanced in a csrA mutant. CsrA had modest to negligible effects on dksA and spoT expression. Transcription of dksA was negatively autoregulated via a feedback loop that tended to mask CsrA effects. We propose that the Csr system fine-tunes the stringent response and discuss biological implications of the composite circuitry.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/metabolismo , ARN no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Bases , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Unión Proteica , ARN Bacteriano/genética , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
20.
Front Genome Ed ; 4: 780238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35174354

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) mediated genome editing is a powerful approach for crop improvement. Traditional transformation methods based on plasmid delivery pose concerns associated with transgene integration and off-target effects. CRISPR delivered as ribonucleoproteins (RNPs) can prevent exogenous DNA integration, minimize off-target effects, and reduce cellular toxicity. Although RNP delivered CRISPR genome editing has been demonstrated in many plant species, optimization strategies that yield high editing efficiencies have not been thoroughly investigated. Using rice and citrus protoplast systems we demonstrated highly efficient genome editing using Cas12a delivered as RNPs. Four Cas12a variants, including LbCas12a, LbCas12a-E795L, AsCas12a, and AsCas12a Ultra, were investigated. Nearly 100% editing efficiency was observed for three out of four target sites by LbCas12a, LbCas12a-E795L, and AsCas12a Ultra, as measured by restriction fragment length polymorphism (RFLP) and verified by next generation sequencing of PCR amplicons. RNP delivery resulted in higher editing efficiencies than plasmid delivery at 32°C and 25°C. LbCas12a and LbCas12a-E795L demonstrated increased editing efficiencies in comparison to AsCas12a and AsCas12a Ultra, especially when used at lower RNP concentrations. In addition, we discovered that a 1:1 Cas12a:crRNA molar ratio is sufficient to achieve efficient genome editing. Nuclear localization signals (NLSs) are essential for efficient RNP-based genome editing. However, the different crRNA modifications tested did not significantly improve genome editing efficiency. Finally, we applied the Cas12a RNP system in citrus protoplasts and obtained similarly high editing efficiencies at the target site. Our study provides a comprehensive guideline for Cas12a-mediated genome editing using RNP delivery in plant cells, setting the foundation for the generation of transgene-free genome edited plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA