Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 21(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827134

RESUMEN

Due to the constant growth of the human population and anthropological activity, it has become necessary to use sustainable and affordable technologies that satisfy the current and future demand for agricultural products. Since the nutrients available to plants in the soil are limited and the need to increase the yields of the crops is desirable, the use of chemical (inorganic or NPK) fertilizers has been widespread over the last decades, causing a nutrient shortage due to their misuse and exploitation, and because of the uncontrolled use of these products, there has been a latent environmental and health problem globally. For this reason, green biotechnology based on the use of microalgae biomass is proposed as a sustainable alternative for development and use as soil improvers for crop cultivation and phytoremediation. This review explores the long-term risks of using chemical fertilizers for both human health (cancer and hypoxia) and the environment (eutrophication and erosion), as well as the potential of microalgae biomass to substitute current fertilizer using different treatments on the biomass and their application methods for the implementation on the soil; additionally, the biomass can be a source of carbon mitigation and wastewater treatment in agro-industrial processes.


Asunto(s)
Microalgas , Suelo , Humanos , Fertilizantes/análisis , Huella de Carbono , Carbono , Biotecnología , Biomasa
2.
Heliyon ; 10(17): e37014, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296035

RESUMEN

Nowadays, the need to track fast-spreading infectious diseases has raised due to the recent COVID-19 disease pandemic. As a response, Wastewater-based Surveillance (WBS) has emerged as an early detection and disease tracking method for large populations that enables a comprehensive overview of public health allowing for a faster response from public health sector to prevent large outbreaks. The process to achieve WBS requires a highly intensive sampling strategy with either expensive equipment or trained personnel to continuously sample. The sampling problem can be addressed by passive sampler development. Chitosan-based hydrogels are recognized for their capability to sample and remove various contaminants from wastewater, including metals, dyes, pharmaceuticals, among others. However, chitosan-based hydrogels unique characteristics, can be exploited to develop passive samplers of genetic material that can be a very valuable tool for WBS. This study aimed to develop a novel chitosan hydrogel formulation with enhanced characteristics suitable for use as a passive sampler of genetic material and its application to detect disease-causing pathogens present in wastewater. The study evaluates the effect of the concentration of different components on the formulation of a Chitosan composite hydrogel (Chitosan, Glutaraldehyde, Microcrystalline cellulose (MCC), and Polyethylene glycol (PEG)) on the hydrogel properties using a Box Hunter & Hunter experimental matrix. Hydrogels' weight, thickness, swelling ratio, microscopic morphology (SEM), FTIR assay, and zeta potential were characterized. The resulting hydrogel formulations were shown to be highly porous, positively charged (Zeta potential up to 35.80 ± 1.44 mV at pH 3) and with high water swelling capacity (up to 703.89 ± 15.00 %). Based on the results, a formulation from experimental design was selected and then evaluated its capacity to adsorb genetic material from a control spiked water with Influenza A virus synthetic vector. The adsorption capacity of the selected formulation was 4157.04 ± 64.74 Gene Copies/mL of Influenza A virus synthetic vector. The developed hydrogel showed potential to be used as passive sampler for pathogen detection in wastewater. However, deeper research can be conducted to improve adsorption, desorption and extraction techniques of genetic material from chitosan-hydrogel matrices.

3.
Biosensors (Basel) ; 13(10)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37887115

RESUMEN

Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.


Asunto(s)
Técnicas Biosensibles , Listeria monocytogenes , Nanoestructuras , Microbiología de Alimentos , Técnicas Biosensibles/métodos , Listeria monocytogenes/genética , Escherichia coli
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA