Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074952

RESUMEN

This comprehensive review explores the role of deep learning (DL) in glioma segmentation using multiparametric magnetic resonance imaging (MRI) data. The study surveys advanced techniques such as multiparametric MRI for capturing the complex nature of gliomas. It delves into the integration of DL with MRI, focusing on convolutional neural networks (CNNs) and their remarkable capabilities in tumor segmentation. Clinical applications of DL-based segmentation are highlighted, including treatment planning, monitoring treatment response, and distinguishing between tumor progression and pseudo-progression. Furthermore, the review examines the evolution of DL-based segmentation studies, from early CNN models to recent advancements such as attention mechanisms and transformer models. Challenges in data quality, gradient vanishing, and model interpretability are discussed. The review concludes with insights into future research directions, emphasizing the importance of addressing tumor heterogeneity, integrating genomic data, and ensuring responsible deployment of DL-driven healthcare technologies. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 2.

2.
J Magn Reson Imaging ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031466

RESUMEN

BACKGROUND: Glioma grading transformed in World Health Organization (WHO) 2021 CNS tumor classification, integrating molecular markers. However, the impact of this change on radiomics-based machine learning (ML) classifiers remains unexplored. PURPOSE: To assess the performance of ML in classifying glioma tumor grades based on various WHO criteria. STUDY TYPE: Retrospective. SUBJECTS: A neuropathologist regraded gliomas of 237 patients into WHO 2016 and 2021 from 2007 criteria. FIELD STRENGTH/SEQUENCE: Multicentric 0.5 to 3 Tesla; pre- and post-contrast T1-weighted, T2-weighted, and fluid-attenuated inversion recovery. ASSESSMENT: Radiomic features were selected using random forest-recursive feature elimination. The synthetic minority over-sampling technique (SMOTE) was implemented for data augmentation. Stratified 10-fold cross-validation with and without SMOTE was used to evaluate 11 classifiers for 3-grade (2, 3, and 4; WHO 2016 and 2021) and 2-grade (low and high grade; WHO 2007 and 2021) classification. Additionally, we developed the models on data randomly divided into training and test sets (mixed-data analysis), or data divided based on the centers (independent-data analysis). STATISTICAL TESTS: We assessed ML classifiers using sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC). Top performances were compared with a t-test and categorical data with the chi-square test using a significance level of P < 0.05. RESULTS: In the mixed-data analysis, Stacking Classifier without SMOTE achieved the highest accuracy (0.86) and AUC (0.92) in 3-grade WHO 2021 grouping. The results of WHO 2021 were significantly better than WHO 2016 (P-value<0.0001). In the 2-grade analysis, ML achieved 1.00 in all metrics. In the independent-data analysis, ML classifiers showed strong discrimination between grade 2 and 4, despite lower performance metrics than the mixed analysis. DATA CONCLUSION: ML algorithms performed better in glioma tumor grading based on WHO 2021 criteria. Nonetheless, the clinical use of ML classifiers needs further investigation. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

3.
J Magn Reson Imaging ; 57(6): 1702-1712, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36226735

RESUMEN

BACKGROUND: Alzheimer disease (AD) is a neurological disorder with brain network dysfunction. Investigation of the brain network functional connectivity (FC) alterations using resting-state functional MRI (rs-fMRI) can provide valuable information about the brain network pattern in early AD diagnosis. PURPOSE: To quantitatively assess FC patterns of resting-state brain networks and graph theory metrics (GTMs) to identify potential features for differentiation of amnestic mild cognitive impairment (aMCI) and late-onset AD from normal. STUDY TYPE: Prospective. SUBJECTS: A total of 14 normal, 16 aMCI, and 13 late-onset AD. FIELD STRENGTH/SEQUENCE: A 3.0 T; rs-fMRI: single-shot 2D-EPI and T1-weighted structure: MPRAGE. ASSESSMENT: By applying bivariate correlation coefficient and Fisher transformation on the time series of predefined ROIs' pairs, correlation coefficient matrixes and ROI-to-ROI connectivity (RRC) were extracted. By thresholding the RRC matrix (with a threshold of 0.15), a graph adjacency matrix was created to compute GTMs. STATISTICAL TESTS: Region of interest (ROI)-based analysis: parametric multivariable statistical analysis (PMSA) with a false discovery rate using (FDR)-corrected P < 0.05 cluster-level threshold together with posthoc uncorrected P < 0.05 connection-level threshold. Graph-theory analysis (GTA): P-FDR-corrected < 0.05. One-way ANOVA and Chi-square tests were used to compare clinical characteristics. RESULTS: PMSA differentiated AD from normal, with a significant decrease in FC of default mode, salience, dorsal attention, frontoparietal, language, visual, and cerebellar networks. Furthermore, significant increase in overall FC of visual and language networks was observed in aMCI compared to normal. GTA revealed a significant decrease in global-efficiency (28.05 < 45), local-efficiency (22.98 < 24.05), and betweenness-centrality (14.60 < 17.39) for AD against normal. Moreover, a significant increase in local-efficiency (33.46 > 24.05) and clustering-coefficient (25 > 20.18) were found in aMCI compared to normal. DATA CONCLUSION: This study demonstrated resting-state FC potential as an indicator to differentiate AD, aMCI, and normal. GTA revealed brain integration and breakdown by providing concise and comprehensible statistics. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Estudios Prospectivos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Disfunción Cognitiva/diagnóstico por imagen
4.
Med Biol Eng Comput ; 59(6): 1261-1283, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33983494

RESUMEN

Computer-aided diagnosis (CAD) of heart diseases using machine learning techniques has recently received much attention. In this study, we present a novel parametric-based feature selection method using the three-dimensional spherical harmonic (SHs) shape descriptors of the left ventricle (LV) for intelligent myocardial infarction (MI) classification. The main hypothesis is that the SH coefficients of the parameterized endocardial shapes in MI patients are recognizable and distinguishable from healthy subjects. The SH parameterization, expansion, and registration of the LV endocardial shapes were performed, then parametric-based features were extracted. The proposed method performance was investigated by varying considered phases (i.e., the end-systole (ES) or the end-diastole (ED) frames), the spatial alignment procedures based on three modes (i.e., the center of the apical (CoA), the center of mass (CoM), and the center of the basal (CoB)), and considered orders of SH coefficients. After applying principal component analysis (PCA) on the feature vectors, support vector machine (SVM), K-nearest neighbors (K-NN), and random forest (RF) were trained and tested using the leave-one-out cross-validation (LOOCV). The proposed method validation was performed via a dataset containing healthy and MI subjects selected from the automated cardiac diagnosis challenge (ACDC) database. The promising results show the effectiveness of the proposed classification model. SVM reached the best performance with accuracy, sensitivity, specificity, and F-score of 97.50%, 95.00%, 100.00%, and 97.56%, respectively, using the introduced optimum feature set. This study demonstrates the robustness of combining the SH coefficients and machine learning techniques. We also quantify and notably highlight the contribution of different parameters in the classification and finally introduce an optimal feature set with maximum discriminant strength for the MI classification task. Moreover, the obtained results confirm that the proposed method performs more accurately than conventional point-based methods and also the current start-of-the-art, i.e., clinical measures. We showed our method's generalizability using employing it in dilated cardiomyopathy (DCM) detection and achieving promising results too. Parametric-based feature selection via spherical harmonics coefficients for the left ventricle myocardial infarction screening.


Asunto(s)
Ventrículos Cardíacos , Infarto del Miocardio , Algoritmos , Diagnóstico por Computador , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Infarto del Miocardio/diagnóstico , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA