Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Mol Neurosci ; 16: 1125160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113267

RESUMEN

We report on the effects of ethanol (EtOH) and Poly (ADP-ribose) polymerase (PARP) inhibition on RNA ribosomal engagement, as a proxy for protein translation, in prefrontal cortical (PFC) pyramidal neurons. We hypothesized that EtOH induces a shift in RNA ribosomal-engagement (RE) in PFC pyramidal neurons, and that many of these changes can be reversed using a PARP inhibitor. We utilized the translating ribosome affinity purification (TRAP) technique to isolate cell type-specific RNA. Transgenic mice with EGFP-tagged Rpl10a ribosomal protein expressed only in CaMKIIα-expressing pyramidal cells were administered EtOH or normal saline (CTL) i.p. twice a day, for four consecutive days. On the fourth day, a sub-group of mice that received EtOH in the previous three days received a combination of EtOH and the PARP inhibitor ABT-888 (EtOH + ABT-888). PFC tissue was processed to isolate both, CaMKIIα pyramidal cell-type specific ribosomal-engaged RNA (TRAP-RNA), as well as genomically expressed total-RNA from whole tissue, which were submitted for RNA-seq. We observed EtOH effects on RE transcripts in pyramidal cells and furthermore treatment with a PARP inhibitor "reversed" these effects. The PARP inhibitor ABT-888 reversed 82% of the EtOH-induced changes in RE (TRAP-RNA), and similarly 83% in the total-RNA transcripts. We identified Insulin Receptor Signaling as highly enriched in the ethanol-regulated and PARP-reverted RE pool and validated five participating genes from this pathway. To our knowledge, this is the first description of the effects of EtOH on excitatory neuron RE transcripts from total-RNA and provides insights into PARP-mediated regulation of EtOH effects.

2.
Mol Imaging Biol ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945971

RESUMEN

PURPOSE: This study aimed to develop a biocompatible oximetric electron paramagnetic resonance (EPR) spin probe with reduced self-relaxation, and sensitivity to oxygen for a higher signal-to-noise ratio and longer relaxation times at high oxygen concentration, compared to the reference spin probe OX071. PROCEDURES: SOX71 was synthesized by succinylation of the twelve alcohol groups of OX071 spin probe and characterized by EPR at X-Band (9.5 GHz) and at low field (720 MHz). The biocompatibility of SOX71 was tested in vitro and in vivo in mice. A pharmacokinetic study was performed to determine the best time frame for EPR imaging. Finally, a proof-of-concept EPR oxygen imaging was performed on a mouse model of a fibrosarcoma tumor. RESULTS: SOX71 was synthesized in one step from OX071. SOX71 exhibits a narrow line EPR spectrum with a peak-to-peak linewidth of 66 mG, similar to OX071. SOX71 does not bind to albumin nor show cell toxicity for the concentrations tested up to 5 mM. No toxicity was observed after systemic delivery via intraperitoneal injection in mice at twice the dose required for EPR imaging. After the injection, the probe is readily absorbed into the bloodstream, with a peak blood concentration half an hour, post-injection. Then, the probe is quickly cleared by the kidney with a half-life of ~ 45 min. SOX71 shows long relaxation times under anoxic condition (T1e = 9.5 µs and T2e = 5.1 µs; [SOX71] = 1 mM in PBS at 37 °C, pO2 = 0 mmHg, 720 MHz). Both the relaxation rates R1e and R2e show a decreased sensitivity to pO2, leading to twice longer relaxation times under room air conditions (pO2 = 159 mmHg) compared to OX071. This is ideal for oxygen imaging in samples with a wide range of pO2. Both the relaxation rates R1e and R2e show a decreased sensitivity to self-relaxation compared to OX071, with a negligible effect of the probe concentration on R1e. SOX71 was successfully applied to image oxygen in a tumor. CONCLUSION: SOX71, a succinylated derivative of OX071 was synthesized, characterized, and applied for in vivo EPR tumor oxygen imaging. SOX71 is highly biocompatible, and shows decreased sensitivity to oxygen and self-relaxation. This first report suggests that SOX71 is superior to OX071 for absolute oxygen mapping under a broad range of pO2 values.

3.
Neuroscience ; 448: 1-13, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32920042

RESUMEN

Binge drinking is a frequent pattern of ethanol consumption within Alcohol Use Disorders (AUDs). Binge-like ethanol exposure increases Poly(ADP-ribose) polymerase (PARP) expression and activity. PARP enzymes have been implicated in addiction and serve multiple roles in the cell, including gene expression regulation. In this study, we examined the effects of binge-like alcohol consumption in the prefrontal cortex (PFC) of adult C57BL/6J male mice via a 4-day Drinking-in-the-Dark (DID) paradigm. The role of PARP in associated gene expression and behavioral changes was assessed by administering the PARP inhibitor ABT-888 on the last DID day. We then conducted an RNA-seq analysis of the PFC gene expression changes associated with DID-consumed ethanol or ABT-888 treatment. A separate cohort of mice was inoculated with an HSV-PARP1 vector in the PFC and subject to a DID experiment to verify whether overexpressed PARP1 increased ethanol drinking. We confirmed that alcohol increases Parp1 gene expression and PARP activity in the PFC. RNA-seq showed significantly altered expression of 41 genes by DID-consumed ethanol, and of 48 genes by ABT-888. These results were confirmed by qPCR in 7 of the 10 genes validated, 4 of which have been previously associated with addiction. ABT-888 reduced, and overexpression of PFC PARP1 increased DID ethanol consumption. In our model, alcohol binge drinking induced specific alterations in the PFC expression of genes potentially involved in addiction. Pharmacological PARP inhibition proved effective in reversing these changes and preventing further alcohol consumption. Our results suggest an involvement of ethanol-induced PARP1 in reinforcing binge-like addictive behavior.


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Consumo de Bebidas Alcohólicas , Animales , Etanol , Masculino , Ratones , Ratones Endogámicos C57BL , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas
4.
ACS Chem Neurosci ; 7(6): 811-22, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27035276

RESUMEN

We report the synthesis and biological characterization of novel derivatives of 3-[(1-methyl-2(S)-pyrrolidinyl)methoxy]-5-cyclopropylpyridine (4a-f and 5) as potent and highly selective α4ß2-nicotinic acetylcholine receptor (nAChR) full or partial agonists. A systematic structure-activity study was carried out on the previously described compound 3b, particularly concerning its (2-methoxyethyl)cyclopropyl side-chain, in an effort to improve its metabolic stability while maintaining receptor selectivity. Compound 4d exhibited very similar subnanomolar binding affinity for α4ß2- and α4ß2*-nAChRs compared to 3b, and it showed excellent potency in activating high-sensitivity (HS) α4ß2-nAChRs with an EC50 value of 8.2 nM. Testing of 4d in the SmartCube assay revealed that the compound has a combined antidepressant plus antipsychotic signature. In the forced swim test at a dose of 30 mg/kg given intraperitoneally, 4d was found to be as efficacious as sertraline, thus providing evidence of the potential use of the compound as an antidepressant. Additional promise for use of 4d in humans comes from pharmacokinetic studies in mice indicating brain penetration, and additional assays show compound stability in the presence of human microsomes and hepatocytes. Thus, 4d has a very favorable preclinical drug profile.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Ciclopropanos/farmacología , Actividad Motora/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Animales , Ciclopropanos/química , Masculino , Ratones , Relación Estructura-Actividad
5.
ACS Med Chem Lett ; 6(11): 1156-61, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26617971

RESUMEN

Several new mercaptoacetamides were synthesized and studied as HDAC6 inhibitors. One compound, 2b, bearing an aminoquinoline cap group, was found to show 1.3 nM potency at HDAC6, with >3000-fold selectivity over HDAC1. 2b also showed excellent efficacy at increasing tubulin acetylation in rat primary cortical cultures, inducing a 10-fold increase in acetylated tubulin at 1 µM. To assess possible therapeutic effects, compounds were assayed for their ability to increase T-regulatory (Treg) suppressive function. Some but not all of the compounds increased Treg function, and thereby decreased conventional T cell activation and proliferation in vitro.

6.
J Steroid Biochem Mol Biol ; 144 Pt B: 348-60, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24954360

RESUMEN

Deficiency of 3ß-hydroxy-Δ(5)-C27-steroid oxidoreductase (HSD3B7), an enzyme catalyzing the second step in the pathway for bile acid synthesis, leads to a complete lack of the primary bile acids, cholic and chenodeoxycholic acids, and the accumulation of 3ß,7α-dihydroxy- and 3ß,7α,12α-trihydroxy-Δ(5)-cholenoic acids. Patients affected by this autosomal recessive genetic defect develop cholestatic liver disease that is clinically responsive to primary bile acid therapy. Reference standards of these compounds are needed to facilitate diagnosis and to accurately quantify biochemical responses to therapy. Described are a novel synthesis of atypical bile acids that characterize the HSD3B7 deficiency and their effect on bile acid-activated nuclear receptors, target genes and cytochromes involved in bile acid homeostasis and detoxification. The failure of 3ß-hydroxy-Δ(5)-cholenoic acids to function as FXR, PXR and CAR agonists and to exert hepatoprotective actions explains the mechanism for progressive cholestatic liver disease in patients with HSD3B7 deficiency.


Asunto(s)
Hiperplasia Suprarrenal Congénita/metabolismo , Ácidos y Sales Biliares/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Hiperplasia Suprarrenal Congénita/genética , Ácidos y Sales Biliares/síntesis química , Receptor de Androstano Constitutivo , Células Hep G2 , Humanos , Receptor X de Pregnano
7.
J Med Chem ; 56(23): 9482-95, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24274468

RESUMEN

3-Hydroxyanthranilic acid 3,4-dioxygenase (3-HAO) is the enzyme responsible for the production of the neurotoxic tryptophan metabolite quinolinic acid (QUIN). Elevated brain levels of QUIN are observed in several neurodegenerative diseases, but pharmacological investigation on its role in the pathogenesis of these conditions is difficult because only one class of substrate-analogue 3-HAO inhibitors, with poor chemical stability, has been reported so far. Here we describe the design, synthesis, and biological evaluation of a novel class of chemically stable inhibitors based on the 2-aminonicotinic acid 1-oxide nucleus. After the preliminary in vitro evaluation of newly synthesized compounds using brain tissue homogenate, we selected the most active inhibitor and showed its ability to acutely reduce the production of QUIN in the rat brain in vivo. These findings provide a novel pharmacological tool for the study of the mechanisms underlying the onset and propagation of neurodegenerative diseases.


Asunto(s)
3-Hidroxiantranilato 3,4-Dioxigenasa/antagonistas & inhibidores , Encéfalo/metabolismo , Óxidos N-Cíclicos/síntesis química , Inhibidores Enzimáticos/síntesis química , Ácido Quinolínico/metabolismo , Animales , Encéfalo/efectos de los fármacos , Óxidos N-Cíclicos/farmacología , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Ácidos Nicotínicos/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA