Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 291(47): 24364-24376, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27687726

RESUMEN

Psoralen and ultraviolet A light (PUVA) are used to kill pathogens in blood products and as a treatment of aberrant cell proliferation in dermatitis, cutaneous T-cell lymphoma, and graft-versus-host disease. DNA damage is well described, but the direct effects of PUVA on cell signal transduction are poorly understood. Because platelets are anucleate and contain archetypal signal transduction machinery, they are ideally suited to address this. Lipidomics on platelet membrane extracts showed that psoralen forms adducts with unsaturated carbon bonds of fatty acyls in all major phospholipid classes after PUVA. Such adducts increased lipid packing as measured by a blue shift of an environment-sensitive fluorescent probe in model liposomes. Furthermore, the interaction of these liposomes with lipid order-sensitive proteins like amphipathic lipid-packing sensor and α-synuclein was inhibited by PUVA. In platelets, PUVA caused poor membrane binding of Akt and Bruton's tyrosine kinase effectors following activation of the collagen glycoprotein VI and thrombin protease-activated receptor (PAR) 1. This resulted in defective Akt phosphorylation despite unaltered phosphatidylinositol 3,4,5-trisphosphate levels. Downstream integrin activation was furthermore affected similarly by PUVA following PAR1 (effective half-maximal concentration (EC50), 8.4 ± 1.1 versus 4.3 ± 1.1 µm) and glycoprotein VI (EC50, 1.61 ± 0.85 versus 0.26 ± 0.21 µg/ml) but not PAR4 (EC50, 50 ± 1 versus 58 ± 1 µm) signal transduction. Our findings were confirmed in T-cells from graft-versus-host disease patients treated with extracorporeal photopheresis, a form of systemic PUVA. In conclusion, PUVA increases the order of lipid phases by covalent modification of phospholipids, thereby inhibiting membrane recruitment of effector kinases.


Asunto(s)
Membrana Celular/enzimología , Ficusina/farmacología , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Terapia PUVA , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Linfocitos T/enzimología , Rayos Ultravioleta , Agammaglobulinemia Tirosina Quinasa , Membrana Celular/patología , Femenino , Enfermedad Injerto contra Huésped/metabolismo , Humanos , Masculino , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Transfusion ; 55(10): 2404-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25912149

RESUMEN

BACKGROUND: Ultraviolet (UV) light illumination in the presence of exogenously added photosensitizers has been used to inactivate pathogens in platelet (PLT) concentrates for some time. The THERAFLEX UV-C system, however, illuminates PLT concentrates with UV-C light without additional photoactive compounds. In this study residual PLT function is measured in a comprehensive paired analysis of UV-C-treated, gamma-irradiated, and untreated control PLT concentrates. STUDY DESIGN AND METHODS: A pool-and-split design was used with buffy coat-derived PLT concentrates in 65% SSP+ additive solution. Thrombus formation kinetics in microfluidic flow chambers onto immobilized collagen was investigated with real-time video microscopy. PLT aggregation, membrane markers, and cellular metabolism were determined concurrently. RESULTS: Compared to gamma-treated and untreated controls, UV-C treatment significantly affected thrombus formation rates on Days 5 and 7, not Day 2. PLT degranulation (P-selectin) and PLT apoptosis (annexin V binding) was slightly but significantly increased from Day 2 on. UV-C treatment moreover induced integrin αIIb ß3 conformational changes reminiscent of activation. However, subsequent integrin activation by either PAR1-activating hexapeptide (PAR1AP) or convulxin was unaffected. This was confirmed by PLT aggregation studies induced with collagen, PAR1AP, and ristocetin at two different agonist concentrations. Finally, UV-C slightly increased lactic acid production rates, resulting in significantly decreased pH on Days 5 and 7, but never dropped below 7.2. CONCLUSION: UV-C pathogen inactivation treatment slightly but significantly increases PLT activation markers but does not profoundly influence activatability nor aggregation. The treatment does, however, attenuate thrombus formation kinetics in vitro in microfluidic flow chambers, especially after storage.


Asunto(s)
Coagulación Sanguínea/efectos de la radiación , Plaquetas/metabolismo , Colágeno/farmacología , Desinfección/métodos , Integrinas/metabolismo , Rayos Ultravioleta/efectos adversos , Anexina A5/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Seguridad de la Sangre/efectos adversos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Selectina-P/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de la radiación
3.
Transfus Med Rev ; 33(1): 29-34, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021699

RESUMEN

Pathogen inactivation (PI) for platelet concentrates (PC) is a fairly recent development in transfusion medicine that is intended to decrease infectious disease transmission from the donor to the receiving patient. Effective inactivation of viruses, bacteria and eukaryotic parasites adds a layer of safety, protecting the blood supply against customary and emerging pathogens. Three PI methods have been described for platelets. These are based on photochemical damage of nucleic acids which prevents replication of most infectious pathogens and contaminating donor leukocytes. Because platelets do not replicate, the collateral damage to platelet function is considered low to non-existing. This is disputable however because photochemistry is not specific for nucleic acids and significantly affects platelet biomolecules as well. The impact of these biomolecular changes on platelet function and hemostasis is not well understood, but is increasingly being studied. The results of these studies can help explain current and future clinical observations with PI platelets, including the impact on transfusion yield and bleeding. This review summarizes the biomolecular effects of PI treatment on platelets. We conclude that despite a comparable principle of photochemical inactivation, all three methods affect platelets in different ways. This knowledge can help blood banks and transfusion specialists to guide their choice when considering the implementation or clinical use of PI treated platelets.


Asunto(s)
Plaquetas/microbiología , Conservación de la Sangre/métodos , Transfusión de Plaquetas/métodos , Bancos de Sangre , Transfusión Sanguínea , Furocumarinas/química , Furocumarinas/uso terapéutico , Hemostasis/efectos de los fármacos , Humanos , Neoplasias/complicaciones , Ácidos Nucleicos/química , Riboflavina/química , Transducción de Señal , Trombocitopenia/complicaciones , Rayos Ultravioleta
4.
J Vis Exp ; (120)2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28287584

RESUMEN

Microfluidic models of hemostasis assess platelet function under conditions of hydrodynamic shear, but in the presence of anticoagulants, this analysis is restricted to platelet deposition only. The intricate relationship between Ca2+-dependent coagulation and platelet function requires careful and controlled recalcification of blood prior to analysis. Our setup uses a Y-shaped mixing channel, which supplies concentrated Ca2+/Mg2+ buffer to flowing blood just prior to perfusion, enabling rapid recalcification without sample stasis. A ten-fold difference in flow velocity between both reservoirs minimizes dilution. The recalcified blood is then perfused in a collagen-coated analysis chamber, and differential labeling permits real-time imaging of both platelet and fibrin deposition using fluorescence video microscopy. The system uses only commercially available tools, increasing the chances of standardization. Reconstitution of thrombocytopenic blood with platelets from banked concentrates furthermore models platelet transfusion, proving its use in this research domain. Exemplary data demonstrated that coagulation onset and fibrin deposition were linearly dependent on the platelet concentration, confirming the relationship between primary and secondary hemostasis in our model. In a timeframe of 16 perfusion min, contact activation did not take place, despite recalcification to normal Ca2+ and Mg2+ levels. When coagulation factor XIIa was inhibited by corn trypsin inhibitor, this time frame was even longer, indicating a considerable dynamic range in which the changes in the procoagulant nature of the platelets can be assessed. Co-immobilization of tissue factor with collagen significantly reduced the time to onset of coagulation, but not its rate. The option to study the tissue factor and/or the contact pathway increases the versatility and utility of the assay.


Asunto(s)
Pruebas de Coagulación Sanguínea/métodos , Coagulación Sanguínea/fisiología , Plaquetas/fisiología , Fibrina/metabolismo , Microfluídica/métodos , Activación Plaquetaria/fisiología , Transfusión de Plaquetas/métodos , Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/metabolismo , Calcio/metabolismo , Colágeno/metabolismo , Factor XII/farmacología , Hemostasis/fisiología , Humanos , Activación Plaquetaria/efectos de los fármacos
5.
J Vis Exp ; (109)2016 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-27023054

RESUMEN

Blood platelets prepared for transfusion gradually lose hemostatic function during storage. Platelet function can be investigated using a variety of (indirect) in vitro experiments, but none of these is as comprehensive as microfluidic flow chambers. In this protocol, the reconstitution of thrombocytopenic fresh blood with stored blood bank platelets is used to simulate platelet transfusion. Next, the reconstituted sample is perfused in microfluidic flow chambers which mimic hemostasis on exposed subendothelial matrix proteins. Effects of blood donation, transport, component separation, storage and pathogen inactivation can be measured in paired experimental designs. This allows reliable comparison of the impact every manipulation in blood component preparation has on hemostasis. Our results demonstrate the impact of temperature cycling, shear rates, platelet concentration and storage duration on platelet function. In conclusion, this protocol analyzes the function of blood bank platelets and this ultimately aids in optimization of the processing chain including phlebotomy, transport, component preparation, storage and transfusion.


Asunto(s)
Seguridad de la Sangre/métodos , Hemostasis , Microfluídica/métodos , Transfusión de Plaquetas/métodos , Plaquetas/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA