Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Stroke ; 53(12): 3696-3705, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36205142

RESUMEN

BACKGROUND: Cerebral small vessel disease (SVD) is common in older people and causes lacunar stroke and vascular cognitive impairment. Risk factors include old age, hypertension and variants in the genes COL4A1/COL4A2 encoding collagen alpha-1(IV) and alpha-2(IV), here termed collagen-IV, which are core components of the basement membrane. We tested the hypothesis that increased vascular collagen-IV associates with clinical hypertension and with SVD in older persons and with chronic hypertension in young and aged primates and genetically hypertensive rats. METHODS: We quantified vascular collagen-IV immunolabeling in small arteries in a cohort of older persons with minimal Alzheimer pathology (N=52; 21F/31M, age 82.8±6.95 years). We also studied archive tissue from young (age range 6.2-8.3 years) and older (17.0-22.7 years) primates (M mulatta) and compared chronically hypertensive animals (18 months aortic stenosis) with normotensives. We also compared genetically hypertensive and normotensive rats (aged 10-12 months). RESULTS: Collagen-IV immunolabeling in cerebral small arteries of older persons was negatively associated with radiological SVD severity (ρ: -0.427, P=0.005) but was not related to history of hypertension. General linear models confirmed the negative association of lower collagen-IV with radiological SVD (P<0.017), including age as a covariate and either clinical hypertension (P<0.030) or neuropathological SVD diagnosis (P<0.022) as fixed factors. Reduced vascular collagen-IV was accompanied by accumulation of fibrillar collagens (types I and III) as indicated by immunogold electron microscopy. In young and aged primates, brain collagen-IV was elevated in older normotensive relative to young normotensive animals (P=0.029) but was not associated with hypertension. Genetically hypertensive rats did not differ from normotensive rats in terms of arterial collagen-IV. CONCLUSIONS: Our cross-species data provide novel insight into sporadic SVD pathogenesis, supporting insufficient (rather than excessive) arterial collagen-IV in SVD, accompanied by matrix remodeling with elevated fibrillar collagen deposition. They also indicate that hypertension, a major risk factor for SVD, does not act by causing accumulation of brain vascular collagen-IV.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Hipertensión , Accidente Vascular Cerebral Lacunar , Animales , Ratas , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Accidente Vascular Cerebral Lacunar/complicaciones , Hipertensión/complicaciones , Encéfalo/patología , Presión Sanguínea , Colágeno Tipo IV/genética
2.
Nat Mater ; 20(6): 892-903, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33495631

RESUMEN

The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores. Our results therefore reveal that BM stiffness is dominant over pore size, and that the mechanical properties of 'normal' BMs determine metastases formation and patient survival independent of cancer-mediated alterations. Thus, identifying individual Net4 protein levels within native BMs in major metastatic organs may have the potential to define patient survival even before tumour formation. The ratio of Net4 to laminin molecules determines BM stiffness, such that the more Net4, the softer the BM, thereby decreasing cancer cell invasion activity.


Asunto(s)
Membrana Basal/metabolismo , Fenómenos Mecánicos , Metástasis de la Neoplasia , Fenómenos Biomecánicos , Línea Celular Tumoral , Humanos , Netrinas/metabolismo
3.
J Am Soc Nephrol ; 32(7): 1713-1732, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34049963

RESUMEN

BACKGROUND: Accumulation of extracellular matrix in organs and tissues is a feature of both aging and disease. In the kidney, glomerulosclerosis and tubulointerstitial fibrosis accompany the decline in function, which current therapies cannot address, leading to organ failure. Although histologic and ultrastructural patterns of excess matrix form the basis of human disease classifications, a comprehensive molecular resolution of abnormal matrix is lacking. METHODS: Using mass spectrometry-based proteomics, we resolved matrix composition over age in mouse models of kidney disease. We compared the changes in mice with a global characterization of human kidneymatrix during aging and to existing kidney disease datasets to identify common molecular features. RESULTS: Ultrastructural changes in basement membranes are associated with altered cell adhesion and metabolic processes and with distinct matrix proteomes during aging and kidney disease progression in mice. Within the altered matrix, basement membrane components (laminins, type IV collagen, type XVIII collagen) were reduced and interstitial matrix proteins (collagens I, III, VI, and XV; fibrinogens; and nephronectin) were increased, a pattern also seen in human kidney aging. Indeed, this signature of matrix proteins was consistently modulated across all age and disease comparisons, and the increase in interstitial matrix was also observed in human kidney disease datasets. CONCLUSIONS: This study provides deep molecular resolution of matrix accumulation in kidney aging and disease, and identifies a common signature of proteins that provides insight into mechanisms of response to kidney injury and repair.

4.
Hum Mol Genet ; 28(4): 628-638, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30351356

RESUMEN

Mutations in the collagen genes COL4A1 and COL4A2 cause Mendelian eye, kidney and cerebrovascular disease including intracerebral haemorrhage (ICH), and common collagen IV variants are a risk factor for sporadic ICH. COL4A1 and COL4A2 mutations cause endoplasmic reticulum (ER) stress and basement membrane (BM) defects, and recent data suggest an association of ER stress with ICH due to a COL4A2 mutation. However, the potential of ER stress as a therapeutic target for the multi-systemic COL4A1 pathologies remains unclear. We performed a preventative oral treatment of Col4a1 mutant mice with the chemical chaperone phenyl butyric acid (PBA), which reduced adult ICH. Importantly, treatment of adult mice with the established disease also reduced ICH. However, PBA treatment did not alter eye and kidney defects, establishing tissue-specific outcomes of targeting Col4a1-derived ER stress, and therefore this treatment may not be applicable for patients with eye and renal disease. While PBA treatment reduced ER stress and increased collagen IV incorporation into BMs, the persistence of defects in BM structure and reduced ability of the BM to withstand mechanical stress indicate that PBA may be counter-indicative for pathologies caused by matrix defects. These data establish that treatment for COL4A1 disease requires a multipronged treatment approach that restores both ER homeostasis and matrix defects. Alleviating ER stress is a valid therapeutic target for preventing and treating established adult ICH, but collagen IV patients will require stratification based on their clinical presentation and mechanism of their mutations.


Asunto(s)
Hemorragia Cerebral/tratamiento farmacológico , Colágeno Tipo IV/genética , Terapia Molecular Dirigida , Animales , Membrana Basal/efectos de los fármacos , Membrana Basal/patología , Hemorragia Cerebral/genética , Hemorragia Cerebral/patología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Ratones , Mutación , Fenilbutiratos/administración & dosificación
5.
Clin Sci (Lond) ; 132(8): 851-868, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712883

RESUMEN

Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/etiología , Investigación Biomédica Traslacional , Animales , Humanos
6.
Ann Neurol ; 80(5): 741-753, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27666438

RESUMEN

OBJECTIVE: Cerebral small vessel disease (cSVD) is a heterogeneous group of disorders. Screening of known cSVD genes identifies the causative mutation in <15% of familial cSVD cases. We sought to identify novel causes of cSVD. METHODS: We used linkage analysis and exome sequencing to identify the causal mutation in a French cSVD family. The identified candidate gene was then screened in 202 cSVD unrelated probands, including 1 proband from the first reported pontine autosomal dominant microangiopathy with leukoencephalopathy (PADMAL) family. Sanger sequencing was used to confirm variants in all mutated probands and analyze their segregation in probands' relatives. Mutation consequences were assessed with luciferase reporter assays and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: A candidate heterozygous variant located in a predicted miR-29 microRNA binding site, within the 3' untranslated region of COL4A1, was identified in the large French cSVD family. Five additional unrelated probands, including the PADMAL proband, harbored heterozygous variants in this microRNA binding site. Variants cosegregated with the affected phenotype, and cumulative logarithm of odds score reached 6.03, establishing linkage to this locus. A highly significant difference was observed when comparing the number of variants within this binding site in cases and controls (p = 1.77 × 10E-12). RT-qPCR analyses of patients' primary fibroblasts and luciferase reporter assays strongly favor an upregulation of COL4A1 mediated by disruption of miR-29 binding to its target site. Magnetic resonance imaging features were characterized by the presence of multiple pontine infarcts in all symptomatic mutation carriers. INTERPRETATION: Mutations upregulating COL4A1 expression lead to PADMAL, a severe early onset ischemic cSVD, distinct from the various phenotypes associated with COL4A1 missense glycine mutations. Ann Neurol 2016;80:741-753.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Colágeno Tipo IV/metabolismo , Leucoencefalopatías , MicroARNs/metabolismo , Puente/diagnóstico por imagen , Edad de Inicio , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Colágeno Tipo IV/genética , Exoma , Femenino , Francia , Ligamiento Genético , Humanos , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/genética , Leucoencefalopatías/fisiopatología , Masculino , Persona de Mediana Edad , Mutación , Linaje , Unión Proteica , Regulación hacia Arriba
7.
Hum Mol Genet ; 23(2): 283-92, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24001601

RESUMEN

Haemorrhagic stroke accounts for ∼20% of stroke cases and porencephaly is a clinical consequence of perinatal cerebral haemorrhaging. Here, we report the identification of a novel dominant G702D mutation in the collagen domain of COL4A2 (collagen IV alpha chain 2) in a family displaying porencephaly with reduced penetrance. COL4A2 is the obligatory protein partner of COL4A1 but in contrast to most COL4A1 mutations, the COL4A2 mutation does not lead to eye or kidney disease. Analysis of dermal biopsies from a patient and his unaffected father, who also carries the mutation, revealed that both display basement membrane (BM) defects. Intriguingly, defective collagen IV incorporation into the dermal BM was observed in the patient only and was associated with endoplasmic reticulum (ER) retention of COL4A2 in primary dermal fibroblasts. This intracellular accumulation led to ER stress, unfolded protein response activation, reduced cell proliferation and increased apoptosis. Interestingly, the absence of ER retention of COL4A2 and ER stress in cells from the unaffected father indicate that accumulation and/or clearance of mutant COL4A2 from the ER may be a critical modifier for disease development. Our analysis also revealed that mutant collagen IV is degraded via the proteasome. Importantly, treatment of patient cells with a chemical chaperone decreased intracellular COL4A2 levels, ER stress and apoptosis, demonstrating that reducing intracellular collagen accumulation can ameliorate the cellular phenotype of COL4A2 mutations. Importantly, these data highlight that manipulation of chaperone levels, intracellular collagen accumulation and ER stress are potential therapeutic options for collagen IV diseases including haemorrhagic stroke.


Asunto(s)
Membrana Basal/fisiopatología , Encefalopatías/tratamiento farmacológico , Colágeno Tipo IV/deficiencia , Hemiplejía/tratamiento farmacológico , Hemorragias Intracraneales/tratamiento farmacológico , Fenilbutiratos/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Membrana Basal/efectos de los fármacos , Encefalopatías/genética , Encefalopatías/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Hemiplejía/genética , Hemiplejía/patología , Humanos , Hemorragias Intracraneales/complicaciones , Hemorragias Intracraneales/genética , Masculino , Mutación , Fenotipo , Porencefalia , Complejo de la Endopetidasa Proteasomal/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/genética
8.
Adv Healthc Mater ; : e2303777, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101628

RESUMEN

The blood-brain barrier (BBB) tightly regulates substance transport between the bloodstream and the brain. Models for the study of the physiological processes affecting the BBB, as well as predicting the permeability of therapeutic substances for neurological and neurovascular pathologies, are highly desirable. Existing models, such as Transwell utilizing-models, do not mimic the extracellular environment of the BBB with their stiff, semipermeable, non-biodegradable membranes. To help overcome this, we engineered electrospun membranes from poly L-lactic acid in combination with a nanometric coating of poly(ethyl acrylate) (PEA) that drives fibrillogenesis of fibronectin, facilitating the synergistic presentation of both growth factors and integrin binding sites. Compared to commercial semi-porous membranes, these membranes significantly improve the expression of BBB-related proteins in brain endothelial cells. PEA-coated membranes in combination with different growth factors and extracellular protein coatings reveal nerve growth factor (NGF) and fibroblast growth factor (FGF-2) caused formation of better barriers in vitro. This BBB model offers a robust platform for studying key biochemical factors influencing barrier formation that marries the simplicity of the Transwell model with the highly tunable electrospun PEA-fibronectin membranes. This enables the generation of high-throughput drug permeability models without the need of complicated co-culture conditions.

9.
Stem Cell Reports ; 18(12): 2386-2399, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977146

RESUMEN

Cerebral small vessel disease (SVD) affects the small vessels in the brain and is a leading cause of stroke and dementia. Emerging evidence supports a role of the extracellular matrix (ECM), at the interface between blood and brain, in the progression of SVD pathology, but this remains poorly characterized. To address ECM role in SVD, we developed a co-culture model of mural and endothelial cells using human induced pluripotent stem cells from patients with COL4A1/A2 SVD-related mutations. This model revealed that these mutations induce apoptosis, migration defects, ECM remodeling, and transcriptome changes in mural cells. Importantly, these mural cell defects exert a detrimental effect on endothelial cell tight junctions through paracrine actions. COL4A1/A2 models also express high levels of matrix metalloproteinases (MMPs), and inhibiting MMP activity partially rescues the ECM abnormalities and mural cell phenotypic changes. These data provide a basis for targeting MMP as a therapeutic opportunity in SVD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Accidente Cerebrovascular , Humanos , Células Endoteliales , Encéfalo/patología , Accidente Cerebrovascular/patología , Matriz Extracelular , Metaloproteinasas de la Matriz/genética , Colágeno Tipo IV/genética
10.
Hum Mol Genet ; 19(6): 1119-28, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20056676

RESUMEN

Collagen type IV is the major structural component of the basement membrane and COL4A1 mutations cause adult small vessel disease, familial porencephaly and hereditary angiopathy with nephropathy aneurysm and cramps (HANAC) syndrome. Here, we show that animals with a Col4a1 missense mutation (Col4a1(+/Raw)) display focal detachment of the endothelium from the media and age-dependent defects in vascular function including a reduced response to nor-epinephrine. Age-dependent hypersensitivity to acetylcholine is abolished by inhibition of nitric oxide synthase (NOS) activity, indicating that Col4a1 mutations affect vasorelaxation mediated by endothelium-derived nitric oxide (NO). These defects are associated with a reduction in basal NOS activity and the development of heightened NO sensitivity of the smooth muscle. The vascular function defects are physiologically relevant as they maintain in part the hypotension in mutant animals, which is primarily associated with a reduced red blood cell volume due to a reduction in red blood cell number, rather than defects in kidney function. To understand the molecular mechanism underlying these vascular defects, we examined the deposition of collagen type IV in the basement membrane, and found it to be defective. Interestingly, this mutation also leads to activation of the unfolded protein response. In summary, our results indicate that mutations in COL4A1 result in a complex vascular phenotype encompassing defects in maintenance of vascular tone, endothelial cell function and blood pressure regulation.


Asunto(s)
Vasos Sanguíneos/fisiopatología , Colágeno Tipo IV/genética , Volumen de Eritrocitos/fisiología , Hipotensión/sangre , Hipotensión/fisiopatología , Mutación/genética , Animales , Animales Recién Nacidos , Vasos Sanguíneos/enzimología , Vasos Sanguíneos/patología , Vasos Sanguíneos/ultraestructura , Hemorragia Cerebral/sangre , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/patología , Hemorragia Cerebral/fisiopatología , GMP Cíclico/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células Endoteliales/patología , Homeostasis/efectos de los fármacos , Hipotensión/complicaciones , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Músculo Liso Vascular/ultraestructura , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Vasodilatación/efectos de los fármacos
11.
Matrix Biol Plus ; 12: 100090, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34849481

RESUMEN

Vascular Ehlers Danlos (vEDS) syndrome is a severe multi-systemic connective tissue disorder characterized by risk of dissection and rupture of the arteries, gastro-intestinal tract and gravid uterus. vEDS is caused by mutations in COL3A1, that encodes the alpha 1 chain of type III collagen, which is a major extracellular matrix component of the vasculature and hollow organs. The first causal mutations were identified in the 1980s but progress in our understanding of the pathomolecular mechanisms has been limited. Recently, the application of more refined animal models combined with global omics approaches has yielded important new insights both in terms of disease mechanisms and potential for therapeutic intervention. However, it is also becoming apparent that vEDS is a complex disorder in terms of its molecular disease mechanisms with a poorly understood allelic and mechanistic heterogeneity. In this brief review we will focus our attention on the disease mechanisms of COL3A1 mutations and vEDS, and recent progress in therapeutic approaches using animal models.

12.
Biosci Rep ; 41(8)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34382650

RESUMEN

Basement membranes (BMs) are highly specialised extracellular matrix (ECM) structures that within the heart underlie endothelial cells (ECs) and surround cardiomyocytes and vascular smooth muscle cells. They generate a dynamic and structurally supportive environment throughout cardiac development and maturation by providing physical anchorage to the underlying interstitium, structural support to the tissue, and by influencing cell behaviour and signalling. While this provides a strong link between BM dysfunction and cardiac disease, the role of the BM in cardiac biology remains under-researched and our understanding regarding the mechanistic interplay between BM defects and their morphological and functional consequences remain important knowledge-gaps. In this review, we bring together emerging understanding of BM defects within the heart including in common cardiovascular pathologies such as contractile dysfunction and highlight some key questions that are now ready to be addressed.


Asunto(s)
Membrana Basal/patología , Cardiopatías/patología , Miocitos Cardíacos/patología , Animales , Membrana Basal/metabolismo , Membrana Basal/fisiopatología , Diferenciación Celular , Microambiente Celular , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Humanos , Mecanotransducción Celular , Miocitos Cardíacos/metabolismo , Estrés Mecánico
13.
J Cereb Blood Flow Metab ; 41(9): 2423-2438, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33730931

RESUMEN

The extracellular matrix (ECM) is a key interface between the cerebrovasculature and adjacent brain tissues. Deregulation of the ECM contributes to a broad range of neurological disorders. However, despite this importance, our understanding of the ECM composition remains very limited mainly due to difficulties in its isolation. To address this, we developed an approach to extract the cerebrovascular ECM from mouse and human post-mortem normal brain tissues. We then used mass spectrometry with off-line high-pH reversed-phase fractionation to increase the protein detection. This identified more than 1000 proteins in the ECM-enriched fraction, with > 66% of the proteins being common between the species. We report 147 core ECM proteins of the human brain vascular matrisome, including collagens, laminins, fibronectin and nidogens. We next used network analysis to identify the connection between the brain ECM proteins and cerebrovascular diseases. We found that genes related to cerebrovascular diseases, such as COL4A1, COL4A2, VCAN and APOE were significantly enriched in the cerebrovascular ECM network. This provides unique mechanistic insight into cerebrovascular disease and potential drug targets. Overall, we provide a powerful resource to study the functions of brain ECM and highlight a specific role for brain vascular ECM in cerebral vascular disease.


Asunto(s)
Trastornos Cerebrovasculares/fisiopatología , Matriz Extracelular/fisiología , Proteómica/métodos , Adulto , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
14.
Neurology ; 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031201

RESUMEN

ObjectiveTo test the genetic contribution of rare missense variants in COL4A1 and COL4A2 in which common variants are genetically associated with sporadic intracerebral hemorrhage (ICH), we performed rare variant analysis in multiple sequencing data for the risk for sporadic ICH.MethodsWe performed sequencing across 559Kbp at 13q34 including COL4A1 and COL4A2 among 2,133 individuals (1,055 ICH cases; 1,078 controls) in US-based and 1,492 individuals (192 ICH cases; 1,189 controls) from Scotland-based cohorts, followed by sequence annotation, functional impact prediction, genetic association testing, and in silico thermodynamic modeling.ResultsWe identified 107 rare nonsynonymous variants in sporadic ICH, of which two missense variants, rs138269346 (COL4A1I110T) and rs201716258 (COL4A2H203L), were predicted to be highly functional and occurred in multiple ICH cases but not in controls from the US-based cohort. The minor allele of rs201716258 was also present in Scottish ICH patients, and rs138269346 was observed in two ICH-free controls with a history of hypertension and myocardial infarction. Rs138269346 was nominally associated with non-lobar ICH risk (P=0.05), but not with lobar ICH (P=0.08), while associations between rs201716258 and ICH subtypes were non-significant (P>0.12). Both variants were considered pathogenic based on minor allele frequency (<0.00035 in EUR), predicted functional impact (deleterious or probably damaging), and in silico modeling studies (substantially altered physical length and thermal stability of collagen).ConclusionsWe identified rare missense variants in COL4A1/A2 in association with sporadic ICH. Our annotation and simulation studies suggest that these variants are highly functional and may represent targets for translational follow-up.

15.
N Engl J Med ; 357(26): 2687-95, 2007 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-18160688

RESUMEN

BACKGROUND: COL4A3, COL4A4, and COL4A5 are the only collagen genes that have been implicated in inherited nephropathies in humans. However, the causative genes for a number of hereditary multicystic kidney diseases, myopathies with cramps, and heritable intracranial aneurysms remain unknown. METHODS: We characterized the renal and extrarenal phenotypes of subjects from three families who had an autosomal dominant hereditary angiopathy with nephropathy, aneurysms, and muscle cramps (HANAC), which we propose is a syndrome. Linkage studies involving microsatellite markers flanking the COL4A1-COL4A2 locus were performed, followed by sequence analysis of COL4A1 complementary DNA extracted from skin-fibroblast specimens from the subjects. RESULTS: We identified three closely located glycine mutations in exons 24 and 25 of the gene COL4A1, which encodes procollagen type IV alpha1. The clinical renal manifestations of the HANAC syndrome in these families include hematuria and bilateral, large cysts. Histologic analysis revealed complex basement-membrane defects in kidney and skin. The systemic angiopathy of the HANAC syndrome appears to affect both small vessels and large arteries. CONCLUSIONS: COL4A1 may be a candidate gene in unexplained familial syndromes with autosomal dominant hematuria, cystic kidney disease, intracranial aneurysms, and muscle cramps.


Asunto(s)
Anomalías Múltiples/genética , Colágeno Tipo IV/genética , Aneurisma Intracraneal/genética , Enfermedades Renales Quísticas/genética , Calambre Muscular/genética , Enfermedades Vasculares/genética , Membrana Basal/patología , Femenino , Enfermedades Genéticas Congénitas/genética , Hematuria/genética , Humanos , Enfermedades Renales Quísticas/patología , Masculino , Mutación , Linaje , Fenotipo , Síndrome
16.
Cell Tissue Res ; 339(1): 167-88, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19756754

RESUMEN

In 1990, the role of basement membranes in human disease was established by the identification of COL4A5 mutations in Alport's syndrome. Since then, the number of diseases caused by mutations in basement membrane components has steadily increased as has our understanding of the roles of basement membranes in organ development and function. However, many questions remain as to the molecular and cellular consequences of these mutations and the way in which they lead to the observed disease phenotypes. Despite this, exciting progress has recently been made with potential treatment options for some of these so far incurable diseases.


Asunto(s)
Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/metabolismo , Mutación , Nefritis Hereditaria , Animales , Membrana Basal Glomerular/patología , Humanos , Nefritis Hereditaria/genética , Nefritis Hereditaria/metabolismo , Nefritis Hereditaria/patología , Nefritis Hereditaria/terapia
17.
Biomaterials ; 252: 120090, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32413593

RESUMEN

Basement membranes (BMs) are specialised extracellular matrices that provide structural support to tissues as well as influence cell behaviour and signalling. Mutations in COL4A1/COL4A2, a major BM component, cause a familial form of eye, kidney and cerebrovascular disease, including stroke, while common variants in these genes are a risk factor for intracerebral haemorrhage in the general population. These phenotypes are associated with matrix defects, due to mutant protein incorporation in the BM and/or its absence by endoplasmic reticulum (ER) retention. However, the effects of these mutations on matrix stiffness, the contribution of the matrix to the disease mechanism(s) and its effects on the biology of cells harbouring a collagen IV mutation remain poorly understood. To shed light on this, we employed synthetic polymer biointerfaces, poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA) coated with ECM proteins laminin or fibronectin (FN), to generate controlled microenvironments and investigate their effects on the cellular phenotype of primary fibroblasts harbouring a COL4A2+/G702D mutation. FN nanonetworks assembled on PEA induced increased deposition and assembly of collagen IV in COL4A2+/G702D cells, which was associated with reduced ER size and enhanced levels of protein chaperones such as BIP, suggesting increased protein folding capacity of the cell. FN nanonetworks on PEA also partially rescued the reduced stiffness of the deposited matrix and cells, and enhanced cell adhesion through increased actin-myosin contractility, effectively rescuing some of the cellular phenotypes associated with COL4A1/4A2 mutations. The mechanism by which FN nanonetworks enhanced the cell phenotype involved integrin ß1-mediated signalling. Collectively, these results suggest that biomaterials and enhanced integrin signalling via assembled FN are able to shape the matrix and cellular phenotype of the COL4A2+/G702D mutation in patient-derived cells.


Asunto(s)
Colágeno Tipo IV , Fibronectinas , Membrana Basal , Colágeno Tipo IV/genética , Matriz Extracelular , Fibroblastos , Fibronectinas/genética , Humanos , Mutación
18.
Essays Biochem ; 63(3): 297-312, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31387942

RESUMEN

Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and collagens are a key component required for BM function. While collagen IV is the major BM collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens cause rare multi-systemic diseases but these collagens have also been associated with major common diseases including stroke. Developing treatments for these conditions will require a collective effort to increase our fundamental understanding of the biology of these collagens and the mechanisms by which mutations therein cause disease. Novel insights into pathomolecular disease mechanisms and cellular responses to these mutations has been exploited to develop proof-of-concept treatment strategies in animal models. Combined, these studies have also highlighted the complexity of the disease mechanisms and the need to obtain a more complete understanding of these mechanisms. The identification of pathomolecular mechanisms of collagen mutations shared between different disorders represent an attractive prospect for treatments that may be effective across phenotypically distinct disorders.


Asunto(s)
Membrana Basal/metabolismo , Enfermedades del Colágeno/etiología , Colágenos no Fibrilares/metabolismo , Animales , Membrana Basal/química , Enfermedades del Colágeno/tratamiento farmacológico , Enfermedades del Colágeno/terapia , Terapia Genética , Humanos , Mutación , Colágenos no Fibrilares/genética
20.
Kidney Int Rep ; 2(4): 739-748, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29142990

RESUMEN

INTRODUCTION: X-linked Alport syndrome (OMIM 301050) is caused by COL4A5 missense variants in 40% of families. This study examined the effects of chemical chaperone treatment (sodium 4-phenylbutyrate) on fibroblast cell lines derived from men with missense mutations. METHODS: Dermal fibroblast cultures were established from 2 affected men and 3 normals. Proliferation rates were examined, the collagen IV α5 chain localized with immunostaining, and levels of the intra- and extracellular chains quantitated with an in-house enzyme-linked immunosorbent assay. COL4A5 mRNA was measured using quantitative reverse transcriptase polymerase chain reaction. Endoplasmic reticulum (ER) size was measured on electron micrographs and after HSP47 immunostaining. Markers of ER stress (ATF6, HSPA5, DDIT3), autophagy (ATG5, BECN1, ATG7), and apoptosis (CASP3, BAD, BCL2) were also quantitated by quantitative reverse transcriptase polymerase chain reaction. Measurements were repeated after 48 hours of incubation with 10 mM sodium 4-phenylbutyrate acid. RESULTS: Both COL4A5 missense variants were associated with reduced proliferation rates on day 6 (P = 0.01 and P = 0.03), ER enlargement, and increased mRNA for ER stress and autophagy (all P values < 0.05) when compared with normal. Sodium 4-phenylbutyrate treatment increased COL4A5 transcript levels (P < 0.01), and reduced ER size (P < 0.01 by EM and P < 0.001 by immunostaining), ER stress (p HSPA5 and DDIT3, all P values < 0.01) and autophagy (ATG7, P < 0.01). Extracellular collagen IV α5 chain was increased in the M1 line only (P = 0.06). DISCUSSION: Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA