Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Environ Manage ; 364: 121427, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870790

RESUMEN

Tidal wetlands play a critical role in emitting greenhouse gases (GHGs) into the atmosphere; our understanding of the intricate interplay between natural processes and human activities shaping their biogeochemistry and GHG emissions remains lacking. In this study, we delve into the spatiotemporal dynamics and key drivers of the GHG emissions from five tidal wetlands in the Scheldt Estuary by focusing on the interactive impacts of salinity and water pollution, two factors exhibiting contrasting gradients in this estuarine system: pollution escalates as salinity declines. Our findings reveal a marked escalation in GHG emissions when moving upstream, primarily attributed to increased concentrations of organic matter and nutrients, coupled with reduced levels of dissolved oxygen and pH. These low water quality conditions not only promote methanogenesis and denitrification to produce CH4 and N2O, respectively, but also shift the carbonate equilibria towards releasing more CO2. As a result, the most upstream freshwater wetland was the largest GHG emitter with a global warming potential around 35 to 70 times higher than the other wetlands. When moving seaward along a gradient of decreasing urbanization and increasing salinity, wetlands become less polluted and are characterized by lower concentrations of NO3-, TN and TOC, which induces stronger negative impact of elevated salinity on the GHG emissions from the saline wetlands. Consequently, these meso-to polyhaline wetlands released considerably smaller amounts of GHGs. These findings emphasize the importance of integrating management strategies, such as wetland restoration and pollution prevention, that address both natural salinity gradients and human-induced water pollution to effectively mitigate GHG emissions from tidal wetlands.


Asunto(s)
Gases de Efecto Invernadero , Salinidad , Contaminación del Agua , Humedales , Gases de Efecto Invernadero/análisis , Estuarios , Monitoreo del Ambiente
2.
Ecology ; 95(6): 1451-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25039209

RESUMEN

Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition.


Asunto(s)
Bivalvos/fisiología , Ecosistema , Animales , Modelos Biológicos , Nueva Zelanda , Océanos y Mares
3.
Mar Environ Res ; 179: 105704, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35850076

RESUMEN

The presence and behaviour of bivalves can affect the functioning of seafloor sediments through the irrigation of deeper strata by feeding and respiring through siphonal channels. Here, we investigated the physiological response and consecutive impact on functioning and body condition of the white furrow shell Abra alba in three pH treatments (pH = 8.2, pH = 7.9 and pH = 7.7). Although no pH effect on survival was found, lowered respiration and calcification rates, decreased energy intake (lower absorption rate) and increased metabolic losses (increased excretion rates) occurred at pH âˆ¼ 7.7. These physiological responses resulted in a negative Scope for Growth and a decreased condition index at this pH. This suggests that the physiological changes may not be sufficient to sustain survival in the long term, which would undoubtedly translate into consequences for ecosystem functioning.


Asunto(s)
Bivalvos , Ecosistema , Animales , Bivalvos/fisiología , Calcificación Fisiológica , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Agua de Mar
4.
Sci Total Environ ; 838(Pt 4): 156610, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35690216

RESUMEN

This article presents a novel conceptual blueprint for an 'ideal', i.e., ecologically relevant, microplastic effect study. The blueprint considers how microplastics should be characterized and applied in laboratory experiments, and how biological responses should be measured to assure unbiased data that reliably reflect the effects of microplastics on aquatic biota. This 'ideal' experiment, although practically unachievable, serves as a backdrop to improve specific aspects of experimental research on microplastic effects. In addition, a systematic and quantitative literature review identified and quantified departures of published experiments from the proposed 'ideal' design. These departures are related mainly to the experimental design of microplastic effect studies failing to mimic natural environments, and experiments with limited potential to be scaled-up to ecosystem level. To produce a valid and generalizable assessment of the effect of microplastics on biota, a quantitative meta-analysis was performed that incorporated the departure of studies from the 'ideal' experiment (a measure of experimental quality) and inverse variance (a measure of the study precision) as weighting coefficients. Greater weights were assigned to experiments with higher quality and/or with lower variance in the response variables. This double-weighting captures jointly the technical quality, ecological relevance and precision of estimates provided in each study. The blueprint and associated meta-analysis provide an improved baseline for the design of ecologically relevant and technically sound experiments to understand the effects of microplastics on single species, populations and, ultimately, entire ecosystems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Plásticos/análisis , Contaminantes Químicos del Agua/análisis
5.
Environ Pollut ; 274: 115825, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33339706

RESUMEN

The distinct spatial variability in microplastic concentrations between marine regions and habitats calls for a better understanding about the transport pathways of this omnipresent pollutant in the marine environment. This study provides empirical evidence that a sessile filter feeder, the Blue mussel M. edulis, accelerates microplastic deposition by aggregating them into sinking particulate faeces and pseudofaeces. After settling to the seafloor, the bioturbation of benthic fauna quickly buries these microplastics. Collectively, these results suggest that if such biologically-mediated benthic-pelagic coupling would be integrated into hydrodynamic transport models, the spatial variability and source-sink dynamics of microplastics would be better understood. It is proposed that microplastic pollution is monitored through sampling that takes into account faeces and pseudofaeces underneath filter feeders. The implications of this detrital pathway for microplastic transfer to the seafloor, and the role of shellfish mariculture in this process, are discussed. Studies that consider filter feeders and benthic communities from other regions, and during different seasons, are needed to validate the proposed biological pump mechanism across space and time.


Asunto(s)
Mytilus edulis , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Proteínas de Transporte de Membrana , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
6.
Environ Pollut ; 256: 113479, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31679869

RESUMEN

Litter is omnipresent in the ocean where it can be ingested by marine biota. Although ingestion of microplastics (MPs) is abundantly reported, insights into how MP can influence predator-prey interactions currently limits our understanding of the ecological impact of MPs. Here we demonstrate trophic transfer of MPs from zooplankton to benthic filter feeders, through consumption of contaminated prey (i.e. prey with ingested MP). However, predation rates of contaminated prey were significantly lower as compared to predation rates of prey that had no MPs ingested. As filter feeder clearance rates were not affected by consumption of MPs, the lower predation rates of contaminated prey appear to be primarily explained by disruption in zooplankton swimming behaviour that reduces their filtration risk. This is the first study that shows how MPs can change predator-prey interactions that are involved in the coupling between the pelagic and seabed habitat.


Asunto(s)
Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Zooplancton/fisiología , Animales , Biota , Ingestión de Alimentos , Ecosistema , Cadena Alimentaria , Microplásticos/análisis , Plásticos , Conducta Predatoria , Contaminantes Químicos del Agua/análisis
7.
Mar Environ Res ; 162: 105096, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32829095

RESUMEN

Functional trait approaches advance the understanding of biodiversity-ecosystem function (BDEF) relationships and its control by the environmental context. Application of these insights into management remains constrained due to lack of evidence from real-world ecosystems that capture the natural spatial and temporal gradients at which biodiversity and environmental conditions operate. In this study we measured macrofauna community traits, ecosystem processes and abiotic properties at 9 locations during 4 months, spanning a wide gradient in sedimentary habitats and salinity in the Scheldt estuary, and quantified the (a)biotic contribution to sediment community oxygen consumption, as a measure of ecosystem function. We found that functional attributes of the macrofauna community and its effect on bio-irrigation can predict ecosystem function, but especially during the colder period of the year. This result highlights that generalizations about BDEF relationships, and biodiversity loss on ecosystem functions, are limited whenever this temporal component is not acknowledged.


Asunto(s)
Ecosistema , Estuarios , Biodiversidad , Salinidad , Estaciones del Año
8.
Mar Pollut Bull ; 153: 110983, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32275538

RESUMEN

Salt marshes in urban watersheds are prone to microplastics (MP) pollution due to their hydrological characteristics and exposure to urban runoff, but little is known about MP distributions in species from these habitats. In the current study, MP occurrence was determined in six benthic invertebrate species from salt marshes along the North Adriatic lagoons (Italy) and the Schelde estuary (Netherlands). The species represented different feeding modes and sediment localisation. 96% of the analysed specimens (330) did not contain any MP, which was consistent across different regions and sites. Suspension and facultative deposit-feeding bivalves exhibited a lower MP occurrence (0.5-3%) relative to omnivores (95%) but contained a much more variable distribution of MP sizes, shapes and polymers. The study provides indications that MP physicochemical properties and species' ecological traits could all influence MP exposure, uptake and retention in benthic organisms inhabiting European salt marsh ecosystems.


Asunto(s)
Monitoreo del Ambiente/métodos , Microplásticos , Plásticos , Contaminantes del Agua/análisis , Humedales , Animales , Ecosistema , Hábitos , Italia , Países Bajos
9.
Mar Pollut Bull ; 126: 308-311, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29421102

RESUMEN

Anthropogenic CO2 emissions are rapidly changing seawater temperature, pH and carbonate chemistry. This study compares the embryonic development under high pCO2 conditions across the south-north distribution range of the marine clam Limecola balthica in NW Europe. The combined effects of elevated temperature and reduced pH on hatching success and size varied strongly between the three studied populations, with the Gulf of Finland population appearing most endangered under the conditions predicted to occur by 2100. These results demonstrate that the assessment of marine faunal population persistence to future climatic conditions needs to consider the interactive effects of co-occurring physico-chemical alterations in seawater within the local context that determines population fitness, adaptation potential and the system resilience to environmental change.


Asunto(s)
Bivalvos/embriología , Dióxido de Carbono/administración & dosificación , Calentamiento Global , Aclimatación , Adaptación Fisiológica , Animales , Bivalvos/efectos de los fármacos , Bivalvos/genética , Carbonatos , Europa (Continente) , Finlandia , Calor , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar/química , Temperatura
10.
Mar Environ Res ; 133: 32-44, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29198410

RESUMEN

In future global change scenarios the surface ocean will experience continuous acidification and rising temperatures. While effects of both stressors on marine, benthic communities are fairly well studied, consequences of the interaction of both factors remain largely unknown. We performed a short-term microcosm experiment exposing a soft-bottom community from an intertidal flat in the Westerscheldt estuary to two levels of seawater pH (ambient pHT = 7.9, reduced pHT = 7.5) and temperature (10 °C ambient and 13 °C elevated temperature) in a crossed design. After 8 weeks, meiobenthic community structure and nematode staining ratios, as a proxy for mortality, were compared between treatments and structural changes were related to the prevailing abiotic conditions in the respective treatments (pore water pHT, sediment grain size, total organic matter content, total organic carbon and nitrogen content, phytopigment concentrations and carbonate concentration). Pore water pHT profiles were significantly altered by pH and temperature manipulations and the combination of elevated temperature and reduced pH intensified the already more acidic porewater below the oxic zone. Meiofauna community composition was significantly affected by the combination of reduced pH and elevated temperature resulting in increased densities of predatory Platyhelminthes, reduced densities of Copepoda and Nauplii and complete absence of Gastrotricha compared to the experimental control. Furthermore, nematode staining ratio was elevated when seawater pH was reduced pointing towards reduced degradation rates of dead nematode bodies. The observed synergistic interactions of pH and temperature on meiobenthic communities and abiotic sediment characteristics underline the importance of multistressor experiments when addressing impacts of global change on the marine environment.


Asunto(s)
Organismos Acuáticos/fisiología , Ecosistema , Calentamiento Global , Invertebrados/fisiología , Agua de Mar/química , Temperatura , Animales , Concentración de Iones de Hidrógeno
11.
Mar Environ Res ; 142: 163-177, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30348474

RESUMEN

Global climate change and the related temperature rise strongly impact marine life and have long been in the center of scientific attention. This experimental work investigates thermal-stress effects on intertidal meiofauna from tropical and temperate coasts, focusing on community responses. Natural communities were exposed for a month to ambient, elevated constant temperatures and diurnal fluctuating temperature regimes with elevated peak maxima, to mimic realistic future climate conditions. Abundance, biodiversity, community composition and functional diversity were assessed. Differential responses between a tropical and a temperate community were revealed. The tropical nematode assemblage was more tolerant to the elevated constant than to the fluctuating temperature regime, whereas the temperate assemblage was equally affected by both. Shifts in dominance of temperature-tolerant species in elevated constant and fluctuating temperature treatments (due to temperature variations) were observed and explained by a combination of differential tolerances and shifts in species interactions. Overall, global warming-induced temperature was found to alter species dynamics within meiobenthic communities, which may have further implications for the ecosystem.


Asunto(s)
Biodiversidad , Calentamiento Global , Nematodos/fisiología , Temperatura , Animales , Densidad de Población
12.
Front Microbiol ; 6: 1124, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528270

RESUMEN

The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary). We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m), with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites) or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter, and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms.

13.
Mar Environ Res ; 104: 37-46, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25594372

RESUMEN

Saltmarshes have been depleted historically, and cumulative stressors threaten their future persistence. We examined experimentally how nutrient availability (high vs. low) affects the responses of Spartina maritima to increased inundation in two mineral soil types (low vs. medium organic). Increased inundation, one of the effects of accelerated sea level rise, had negative effects on most plant growth parameters, but the magnitude varied with soil and nutrient levels, and between plants from different locations. Average differences between inundation treatments were largest at high nutrient conditions in low organic matter soils. We conclude that saltmarsh vegetation would be more drastically affected by increased inundation in low than in medium organic matter soils, and especially in estuaries already under high nutrient availability. This knowledge enhances the prediction of changes at the foreshore of saltmarshes related to sea level rise, and the development of site-specific conservation strategies.


Asunto(s)
Nitrógeno/metabolismo , Poaceae/crecimiento & desarrollo , Suelo/normas , Humedales , Biomasa , Nitrógeno/análisis , Suelo/química , Movimientos del Agua
14.
PLoS One ; 10(5): e0126583, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25961719

RESUMEN

Surface sediments are important systems for the removal of anthropogenically derived inorganic nitrogen in estuaries. They are often characterized by the presence of a microphytobenthos (MPB) biofilm, which can impact bacterial communities in underlying sediments for example by secretion of extracellular polymeric substances (EPS) and competition for nutrients (including nitrogen). Pyrosequencing and qPCR was performed on two intertidal surface sediments of the Westerschelde estuary characterized by a two-fold difference in MPB biomass but no difference in MPB composition. Doubling of MPB biomass was accompanied by a disproportionately (ten-fold) increase in total bacterial abundances while, unexpectedly, no difference in general community structure was observed, despite significantly lower bacterial richness and distinct community membership, mostly for non-abundant taxa. Denitrifier abundances corresponded likewise while community structure, both for nirS and nirK denitrifiers, remained unchanged, suggesting that competition with diatoms for nitrate is negligible at concentrations in the investigated sediments (appr. 1 mg/l NO3-). This study indicates that MPB biomass increase has a general, significantly positive effect on total bacterial and denitrifier abundances, with stimulation or inhibition of specific bacterial groups that however do not result in a re-structured community.


Asunto(s)
Estuarios , Sedimentos Geológicos/análisis , Biomasa , Ecosistema
15.
PLoS One ; 10(7): e0133914, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26214854

RESUMEN

Identifying the effects of stressors before they impact ecosystem functioning can be challenging in dynamic, heterogeneous 'real-world' ecosystems. In aquatic systems, for example, reductions in water clarity can limit the light available for photosynthesis, with knock-on consequences for secondary consumers, though in naturally turbid wave-swept estuaries, detecting the effects of elevated turbidity can be difficult. The objective of this study was to investigate the effects of shading on ecosystem functions mediated by sandflat primary producers (microphytobenthos) and deep-dwelling surface-feeding macrofauna (Macomona liliana; Bivalvia, Veneroida, Tellinidae). Shade cloths (which reduced incident light intensity by ~80%) were deployed on an exposed, intertidal sandflat to experimentally stress the microphytobenthic community associated with the sediment surface. After 13 weeks, sediment properties, macrofauna and fluxes of oxygen and inorganic nutrients across the sediment-water interface were measured. A multivariate metric of ecosystem function (MF) was generated by combining flux-based response variables, and distance-based linear models were used to determine shifts in the drivers of ecosystem function between non-shaded and shaded plots. No significant differences in MF or in the constituent ecosystem function variables were detected between the shaded and non-shaded plots. However, shading reduced the total explained variation in MF (from 64% in non-shaded plots to 15% in shaded plots) and affected the relative influence of M. liliana and other explanatory variables on MF. This suggests that although shade stress may shift the drivers of ecosystem functioning (consistent with earlier investigations of shading effects on sandflat interaction networks), ecosystem functions appear to have a degree of resilience to those changes.


Asunto(s)
Ecosistema , Ambiente , Animales , Humanos , Nueva Zelanda
16.
PLoS One ; 9(10): e108153, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25329898

RESUMEN

Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable and fine sandy sediments under pre-phytoplankton bloom and bloom conditions. Ocean acidification, as mimicked in the laboratory by a realistic pH decrease of 0.3, significantly reduced SCOC on average by 60% and benthic nitrification rates on average by 94% in both sediment types in February (pre-bloom period), but not in April (bloom period). No changes in macrofauna functional community (density, structural and functional diversity) were observed between ambient and acidified conditions, suggesting that changes in benthic biogeochemical cycling were predominantly mediated by changes in the activity of the microbial community during the short-term incubations (14 days), rather than by changes in engineering effects of bioturbating and bio-irrigating macrofauna. As benthic nitrification makes up the gross of ocean nitrification, a slowdown of this nitrogen cycling pathway in both permeable and fine sediments in winter, could therefore have global impacts on coupled nitrification-denitrification and hence eventually on pelagic nutrient availability.


Asunto(s)
Sedimentos Geológicos/química , Nitrificación , Estaciones del Año , Agua de Mar/química , Carbonatos/química , Carbonatos/metabolismo , Cambio Climático , Concentración de Iones de Hidrógeno , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Pigmentos Biológicos/análisis
17.
PLoS One ; 8(6): e65861, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23824689

RESUMEN

Habitat-modifying organisms that impact other organisms and local functioning are important in determining ecosystem resilience. However, it is often unclear how the outcome of interactions performed by key species varies depending on the spatial and temporal disturbance context which makes the prediction of disturbance-driven regime shifts difficult. We investigated the strength and generality of effects of the filter feeding cockle Cerastoderma edule on its ambient intertidal benthic physical and biological environment. By comparing the magnitude of the effect of experimental cockle removal between a non-cohesive and a sheltered cohesive sediment in two different periods of the year, we show that the outcome of cockle interference effects relates to differences in physical disturbance, and to temporal changes in suspended sediment load and ontogenetic changes in organism traits. Interference effects were only present in the cohesive sediments, though the effects varied seasonally. Cockle presence decreased only the density of surface-dwelling species suggesting that interference effects were particularly mediated by bioturbation of the surface sediments. Furthermore, density reductions in the presence of cockles were most pronounced during the season when larvae and juveniles were present, suggesting that these life history stages are most vulnerable to interference competition. We further illustrate that cockles may enhance benthic microalgal biomass, most likely through the reduction of surface-dwelling grazing species, especially in periods with high sediment load and supposedly also high bioturbation rates. Our results emphasize that the physical disturbance of the sediment may obliterate biotic interactions, and that temporal changes in environmental stressors, such as suspended sediments, may affect the outcome of key species interference effects at the local scale. Consequently, natural processes and anthropogenic activities that change bed shear stress and sediment dynamics in coastal soft-sediment systems will affect cockle-mediated influences on ecosystem properties and therefore the resilience of these systems to environmental change.


Asunto(s)
Bivalvos/fisiología , Ecosistema , Animales , Sedimentos Geológicos
18.
Ecol Evol ; 3(11): 3958-85, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24198953

RESUMEN

Bioturbation, the biogenic modification of sediments through particle reworking and burrow ventilation, is a key mediator of many important geochemical processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and resources not always available, and not feasible in some settings. Where dedicated research programmes do not exist, a practical alternative is the adoption of a trait-based approach to estimate community bioturbation potential (BPc). This index can be calculated from inventories of species, abundance and biomass data (routinely available for many systems), and a functional classification of organism traits associated with sediment mixing (less available). Presently, however, there is no agreed standard categorization for the reworking mode and mobility of benthic species. Based on information from the literature and expert opinion, we provide a functional classification for 1033 benthic invertebrate species from the northwest European continental shelf, as a tool to enable the standardized calculation of BPc in the region. Future uses of this classification table will increase the comparability and utility of large-scale assessments of ecosystem processes and functioning influenced by bioturbation (e.g., to support legislation). The key strengths, assumptions, and limitations of BPc as a metric are critically reviewed, offering guidelines for its calculation and application.

19.
PLoS One ; 7(9): e44655, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22970279

RESUMEN

This study investigated the effects of experimentally manipulated seawater carbonate chemistry on several early life history processes of the Baltic tellin (Macoma balthica), a widely distributed bivalve that plays a critical role in the functioning of many coastal habitats. We demonstrate that ocean acidification significantly depresses fertilization, embryogenesis, larval development and survival during the pelagic phase. Fertilization and the formation of a D-shaped shell during embryogenesis were severely diminished: successful fertilization was reduced by 11% at a 0.6 pH unit decrease from present (pH 8.1) conditions, while hatching success was depressed by 34 and 87%, respectively at a 0.3 and 0.6 pH unit decrease. Under acidified conditions, larvae were still able to develop a shell during the post-embryonic phase, but higher larval mortality rates indicate that fewer larvae may metamorphose and settle in an acidified ocean. The cumulative impact of decreasing seawater pH on fertilization, embryogenesis and survival to the benthic stage is estimated to reduce the number of competent settlers by 38% for a 0.3 pH unit decrease, and by 89% for a 0.6 pH unit decrease from present conditions. Additionally, slower growth rates and a delayed metamorphosis at a smaller size were indicative for larvae developed under acidified conditions. This may further decline the recruit population size due to a longer subjection to perturbations, such as predation, during the pelagic phase. In general, early life history processes were most severely compromised at ~pH 7.5, which corresponds to seawater undersaturated with respect to aragonite. Since recent models predict a comparable decrease in pH in coastal waters in the near future, this study indicates that future populations of Macoma balthica are likely to decline as a consequence of ongoing ocean acidification.


Asunto(s)
Bivalvos/fisiología , Dióxido de Carbono/metabolismo , Animales , Bivalvos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/metabolismo
20.
PLoS One ; 7(11): e49795, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185440

RESUMEN

Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.


Asunto(s)
Organismos Acuáticos/fisiología , Ecosistema , Hipoxia , Dinámica Poblacional , Biodiversidad , Eutrofización , Sedimentos Geológicos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA