Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
RSC Adv ; 14(18): 12438-12448, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38633484

RESUMEN

Acetone is a well-known volatile organic compound that is widely used in different industrial and domestic areas, but it can cause dangerous effects on human health. Thus, the fabrication of highly sensitive and selective sensors for recognition of acetone is incredibly important. Here, we prepared the SnO2/Pd-NiO (SPN) nanowires-based gas sensor for the detection of acetone, in which, the amount of Pd nanoparticles were varied to enhance the performance of the devices. We demonstrated that the acetone gas sensing performance of the SPN device was significantly enhanced, showing increases of 3.72 and 6.53 folds compared to pristine SnO2 and NiO sensors, respectively. The Pd-NiO 0.01% wt Pd SPN sensor (SPN-1) exhibited an excellent response (Ra/Rg = 14.88) toward 500 ppm acetone gas. The SPN-1 sensor also showed a fast gas response time of 11/150 seconds with 500 ppm Acetone at 450 °C, while the recovery time was 468/526 seconds. Additionally, the sensor showed good selectivity toward acetone over other reducing gases, such as NH3, CH4, and VOCs. With those results, the SPN-1 sensor shows superiority compared to sensors based on pure materials.

2.
Recent Pat Nanotechnol ; 17(2): 159-164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34602048

RESUMEN

BACKGROUND: The In2O3 nanowires have attracted enormous attention for gas sensor application due to their advantageous features. However, the controlled synthesis of In2O3 nanowires for gas sensors is vital and challenging because the gas sensing performance of the nanowires is strongly dependent on their characteristics. METHODS: Here in this patent, we fabricated In2O3 nanowires on SiO2/Si substrate via a simple thermal vapor deposition method with the Au thin film as the catalyst. The growth temperatures were controlled to obtain desired nanowires of small size. The grown In2O3 nanowires were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The ethanol gas sensing properties were tested under the dynamic flow of dry air and analytic gas. The synthesized In2O3 nanowires have the potential for use in ethanol gas sensor application. RESULTS: In2O3 nanostructures grown at different temperatures ranging from 600 to 900oC have different morphologies. The sample grown at 600oC had a morphology of nanowire, with a diameter of approximately 80 nm and a length of few micrometers. Nanowires grown at 600°C were composed of oxygen (O) and indium (In) elements, with the atomic ratio of [O]/[In] = 3/5. The nanowire was a single phase cubic structure of In2O3 crystal. The In2O3 nanowire sensor showed typical n-type semiconducting sensing properties. The response decreased from 130 to 75 at 100 ppm when the working temperature decreased from 450°C to 350°C. CONCLUSION: The nanowires grown at 600°C by the thermal vapor deposition method had the best morphology with a small diameter of about 80 nm and a length of few micrometers. The In2O3 nanowires had a good ability to sense ethanol at varying concentrations in the range of 20 ppm to 100 ppm. The In2O3 nanowires can be used as building blocks for future nanoscale gas sensors.

3.
RSC Adv ; 13(19): 13017-13029, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124013

RESUMEN

As a source of clean energy, hydrogen (H2) is a promising alternative to fossil fuels in reducing the carbon footprint. However, due to the highly explosive nature of H2, developing a high-performance sensor for real-time detection of H2 gas at low concentration is essential. Here, we demonstrated the H2 gas sensing performance of Ag/Pd nanoparticle-functionalized ZnO nanoplates. Bimetallic Ag/Pd nanoparticles with an average size of 8 nm were prepared and decorated on the surface of ZnO nanoplates to enhance the H2 gas sensing performance. Compared with pristine ZnO, the sensor based on ZnO nanoplate doped with Ag/Pd (0.025 wt%) exhibited an outstanding response upon exposure to H2 gas (R a/R g = 78 for 500 ppm) with fast response time and speedy recovery. The sensor also showed excellent selectivity for the detection of H2 over the interfering gases (i.e., CO, NH3, H2S, and VOCs). The superior gas sensing of the sensor was dominated by the morphological structure of ZnO, and the synergistic effect of strong adsorption and the optimum catalytic characteristics of the bimetallic Ag/Pd enhances the hydrogen response of the sensors. Thus, bimetallic Ag/Pd-doped ZnO is a promising sensing material for the quantitative determination of H2 concentration towards industrial applications.

4.
Prev Vet Med ; 214: 105906, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37023633

RESUMEN

The growing chicken industry in Viet Nam has an increasingly important contribution to the country's food security, but its development requires careful planning to prevent disease risks. This study characterizes the chicken production and distribution networks in Vietnam and identifies potential factors that could promote disease emergence and transmission. Qualitative data were collected from interviews with 29 key informants from five stakeholder groups representing the main nodes from chicken production and distribution networks (PDN). Three main networks were identified based on production type: a colored broiler and spent hen network, a white (or exotic) broiler network, and an egg network. Colored chickens and spent hens are the most preferred commodity by vietnamese consumers and their PDN is composed of production units differing in their scale and management and with long distribution chains involving numerous small-scale independent stakeholders. Live bird markets plays a central role in this network, which is driven by consumers' preference for live chickens. The white chicken network presents an important duality, as it is composed of both a large number of independent household farms and traders operating independently with little chain coordination, and of large farms contracted by vertically-integrated companies. The egg PDN was the most organized network, being mostly controlled by large vertically-integrated companies. High level specialization and diversification of stakeholders is found in all three networks. Stakeholders' perceptions of the main factors promoting disease risk along the PDN were the low biosecurity in household farms and live bird markets, mobile traders, the informal slaughter of birds and the management of sick birds. Findings from this study can be used to plan future studies to support food system planners in the development of safer poultry production and distribution in Vietnam.


Asunto(s)
Pollos , Enfermedades de las Aves de Corral , Animales , Femenino , Vietnam/epidemiología , Comercio , Aves de Corral , Granjas , Enfermedades de las Aves de Corral/epidemiología
5.
Nanomaterials (Basel) ; 13(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616056

RESUMEN

Gas sensors play an important role in many areas of human life, including the monitoring of production processes, occupational safety, food quality assessment, and air pollution monitoring. Therefore, the need for gas sensors to monitor hazardous gases, such as ammonia, at low operating temperatures has become increasingly important in many fields. Sensitivity, selectivity, low cost, and ease of production are crucial characteristics for creating a capillary network of sensors for the protection of the environment and human health. However, developing gas sensors that are not only efficient but also small and inexpensive and therefore integrable into everyday life is a difficult challenge. In this paper, we report on a resistive sensor for ammonia detection based on thin V2O5 nanosheets operating at room temperature. The small thickness and porosity of the V2O5 nanosheets give the sensors good performance for sensing ammonia at room temperature (RT), with a relative change of resistance of 9.4% to 5 ppm ammonia (NH3) and an estimated detection limit of 0.4 ppm. The sensor is selective with respect to the seven interferents tested; it is repeatable and stable over the long term (four months). Although V2O5 is generally an n-type semiconductor, in this case the nanosheets show a p-type semiconductor behavior, and thus a possible sensing mechanism is proposed. The device's performance, along with its size, low cost, and low power consumption, makes it a good candidate for monitoring freshness and spoilage along the food supply chain.

6.
Nanomaterials (Basel) ; 11(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207259

RESUMEN

The response of a single tin oxide nanowire was collected at different temperatures to create a virtual array of sensors working as a nano-electronic nose. The single nanowire, acting as a chemiresistor, was first tested with pure ammonia and then used to determine the freshness status of trout fish (Oncorhynchus mykiss) in a rapid and non-invasive way. The gas sensor reacts to total volatile basic nitrogen, detecting the freshness status of the fish samples in less than 30 s. The sensor response at different temperatures correlates well with the total viable count (TVC), demonstrating that it is a good (albeit indirect) way of measuring the bacterial population in the sample. The nano-electronic nose is not only able to classify the samples according to their degree of freshness but also to quantitatively estimate the concentration of microorganisms present. The system was tested with samples stored at different temperatures and classified them perfectly (100%), estimating their log(TVC) with an error lower than 5%.

7.
RSC Adv ; 11(53): 33613-33625, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497546

RESUMEN

Chemoresistive gas sensors play an important role in detecting toxic gases for air pollution monitoring. However, the demand for suitable nanostructures that could process high sensing performance remains high. In this study, hollow ZnO nanorices were synthesized by a simple hydrothermal method to detect NO2 and SO2 toxic gases efficiently. Material characterization by some advanced techniques, such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy, demonstrated that the hollow ZnO nanorices had a length and diameter size of less than 500 and 160 nm, respectively. In addition, they had a thin shell thickness of less than 30 nm, formed by an assembly of tiny nanoparticles. The sensor based on the hollow ZnO nanorices could detect low concentration of NO2 and SO2 gasses at sub-ppm level. At an optimum operating temperature of 200 °C, the sensor had response values of approximately 15.3 and 4.8 for 1 ppm NO2 and 1 ppm SO2, respectively. The sensor also exhibited good stability and selectivity, suggesting that the sensor can be applied to NO2 and SO2 toxic gas detection in ambient air.

8.
Anal Chim Acta ; 1167: 338576, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34049621

RESUMEN

The effect of MoS2 nanosheet (NS) decoration on the gas-sensing properties of SnO2 nanofibers (NFs) was investigated. The decorated sensors were fabricated by facile on-chip electrospinning technique and subsequently dropping MoS2 NSs-dispersed solution. The MoS2 NS decoration resulted in enhanced the response and reduced the operating temperature of SnO2 NFs towards SO2 gas. The SnO2 NF sensor decorated with the optimum density of MoS2 NSs exhibited about 10-fold enhancement in gas response to 10 ppm SO2 at 150 °C as compared with the bare SnO2 NF sensor. Furthermore, the decorated sensors exhibited an extremely low detection limit and good selectivity for SO2 gas against other interfering gases, such as CO, NH3, and H2. The enhanced SO2 gas-sensing performance of MoS2 NSs-decorated SnO2 NFs was attributed to the chemical sensitization of MoS2 NSs and charge transfer through heterojunctions between the NSs and SnO2 nanograins. The classification of toxic gases such as CO, H2, and NH3 by the MoS2 NSs-decorated SnO2 NF sensors can achieve high accuracy with linear discriminant analysis (LDA). Our results suggest that the one-dimensional nanostructures of semiconductor metal oxides decorated with two-dimensional transition metal dichalcogenides are attractive candidates for the detection of hazardous gases.

9.
J Hazard Mater ; 412: 125181, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33951858

RESUMEN

The selective detection and classification of NH3 and H2S gases with H2S gas interference based on conventional SnO2 thin film sensors is still the main problem. In this work, three layers of SnO2/Pt/WO3 nanofilms with different WO3 thicknesses (50, 80, 140, and 260 nm) were fabricated using the sputtering technique. The WO3 top layer were used as a gas filter to further improve the selectivity of sensors. The effect of WO3 thickness on the (NH3, H2, and H2S) gas-sensing properties of the sensors was investigated. At the optimal WO3 thickness of 140 nm, the gas responses of SnO2/Pt/WO3 sensors toward NH3 and H2 gases were slightly lower than those of Pt/SnO2 sensor film, and the gas response of SnO2/Pt/WO3 sensor films to H2S gas was almost negligible. The calcification of NH3 and H2 gases was effectively conducted by machine learning algorithms. These evidences manifested that SnO2/Pt/WO3 sensor films are suitable for the actual NH3 detection of NH3 and H2S gases.

10.
J Phys Condens Matter ; 33(30)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-33794513

RESUMEN

Gas sensor technology is widely utilized in various areas ranging from home security, environment and air pollution, to industrial production. It also hold great promise in non-invasive exhaled breath detection and an essential device in future internet of things. The past decade has witnessed giant advance in both fundamental research and industrial development of gas sensors, yet current efforts are being explored to achieve better selectivity, higher sensitivity and lower power consumption. The sensing layer in gas sensors have attracted dominant attention in the past research. In addition to the conventional metal oxide semiconductors, emerging nanocomposites and graphene-like two-dimensional materials also have drawn considerable research interest. This inspires us to organize this comprehensive 2020 gas sensing materials roadmap to discuss the current status, state-of-the-art progress, and present and future challenges in various materials that is potentially useful for gas sensors.

11.
RSC Adv ; 10(22): 12759-12771, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35492112

RESUMEN

Fabrication of a high-performance room-temperature (RT) gas sensor is important for the future integration of sensors into smart, portable and Internet-of-Things (IoT)-based devices. Herein, we developed a NO2 gas sensor based on ultrathin MoS2 nanoflowers with high sensitivity at RT. The MoS2 flower-like nanostructures were synthesised via a simple hydrothermal method with different growth times of 24, 36, 48, and 60 h. The synthesised MoS2 nanoflowers were subsequently characterised by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The petal-like nanosheets in pure MoS2 agglomerated to form a flower-like structure with Raman vibrational modes at 378 and 403 cm-1 and crystallisation in the hexagonal phase. The specific surface areas of the MoS2 grown at different times were measured by using the Brunauer-Emmett-Teller method. The largest specific surface area of 56.57 m2 g-1 was obtained for the MoS2 nanoflowers grown for 48 h. This sample also possessed the smallest activation energy of 0.08 eV. The gas-sensing characteristics of sensors based on the synthesised MoS2 nanostructures were investigated using oxidising and reducing gases, such as NO2, SO2, H2, CH4, CO and NH3, at different concentrations and at working temperatures ranging from RT to 150 °C. The sensor based on the MoS2 nanoflowers grown for 48 h showed a high gas response of 67.4% and high selectivity to 10 ppm NO2 at RT. This finding can be ascribed to the synergistic effects of largest specific surface area, smallest crystallite size and lowest activation energy of the MoS2-48 h sample among the samples. The sensors also exhibited a relative humidity-independent sensing characteristic at RT and a low detection limit of 84 ppb, thereby allowing their practical application to portable IoT-based devices.

12.
RSC Adv ; 10(30): 17713-17723, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35515635

RESUMEN

SnO2 nanowires (NWs) are used in gas sensors, but their response to highly toxic gas H2S is low. Thus, their performance toward the effective detection of low-level H2S in air should be improved for environmental-pollution control and monitoring. Herein, Ag2O nanoparticle decorated SnO2 NWs were prepared by a simple on-chip growth and subsequent dip-coating method. The amount of decorated Ag2O nanoparticles on the surface of SnO2 NWs was modified by changing the concentration of AgNO3 solution and/or dipping times. Gas-sensing measurements were conducted at various working temperatures (200-400 °C) toward different H2S concentrations ranging within 0.1-1 ppm. The selectivity of Ag2O-decorated SnO2 NW sensors for ammonia and hydrogen gases was tested. Results confirmed that the Ag2O-decorated SnO2 NW sensors had excellent response, selectivity, and reproducibility. The gas-sensing mechanism was interpreted under the light of energy-band bending by sulfurization, which converted the p-n junction into n-n, thereby significantly enhancing the sensing performance.

13.
Mol Microbiol ; 67(5): 1108-24, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18208493

RESUMEN

Recently, we showed that the MarR-type repressor YkvE (MhqR) regulates multiple dioxygenases/glyoxalases, oxidoreductases and the azoreductase encoding yvaB (azoR2) gene in response to thiol-specific stress conditions, such as diamide, catechol and 2-methylhydroquinone (MHQ). Here we report on the regulation of the yocJ (azoR1) gene encoding another azoreductase by the novel DUF24/MarR-type repressor, YodB after exposure to thiol-reactive compounds. DNA binding activity of YodB is directly inhibited by thiol-reactive compounds in vitro. Mass spectrometry identified YodB-Cys-S-adducts that are formed upon exposure of YodB to MHQ and catechol in vitro. This confirms that catechol and MHQ are auto-oxidized to toxic ortho- and para-benzoquinones which act like diamide as thiol-reactive electrophiles. Mutational analyses further showed that the conserved Cys6 residue of YodB is required for optimal repression in vivo and in vitro while substitution of all three Cys residues of YodB affects induction of azoR1 transcription. Finally, phenotype analyses revealed that both azoreductases, AzoR1 and AzoR2 confer resistance to catechol, MHQ, 1,4-benzoquinone and diamide. Thus, both azoreductases that are controlled by different regulatory mechanisms have common functions in quinone and azo-compound reduction to protect cells against the thiol reactivity of electrophiles.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , NADH NADPH Oxidorreductasas/genética , Quinonas/metabolismo , Proteínas Represoras/genética , Compuestos de Sulfhidrilo/metabolismo , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catecoles/metabolismo , Cisteína/metabolismo , Huella de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Diamida/metabolismo , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Hidroquinonas/metabolismo , Espectrometría de Masas , Modelos Moleculares , NADH NADPH Oxidorreductasas/efectos de los fármacos , Nitrorreductasas , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Regiones Promotoras Genéticas , Proteómica , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Transcripción Genética , Regulación hacia Arriba
14.
Mol Microbiol ; 69(6): 1513-29, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18673455

RESUMEN

SUMMARY: Quinones are highly toxic naturally occurring thiol-reactive compounds. We have previously described novel pathways for quinone detoxification in the Gram-positive bacterium Bacillus subtilis. In this study, we have investigated the extent of irreversible and reversible thiol modifications caused in vivo by electrophilic quinones. Exposure to toxic benzoquinone (BQ) concentrations leads to depletion of numerous Cys-rich cytoplasmic proteins in the proteome of B. subtilis. Mass spectrometry and immunoblot analyses demonstrated that these BQ-depleted proteins represent irreversibly damaged BQ aggregates that escape the two-dimensional gel separation. This enabled us to quantify the depletion of thiol-containing proteins which are the in vivo targets for thiol-(S)-alkylation by toxic quinone compounds. Metabolomic approaches confirmed that protein depletion is accompanied by depletion of the low-molecular-weight (LMW) thiol cysteine. Finally, no increased formation of disulphide bonds was detected in the thiol-redox proteome in response to sublethal quinone concentrations. The glyceraldehyde-3-phosphate dehydrogenase (GapA) was identified as the only new target for reversible thiol modifications after exposure to toxic quinones. Together our data show that the thiol-(S)-alkylation reaction with protein and non-protein thiols is the in vivo mechanism for thiol depletion and quinone toxicity in B. subtilis and most likely also in other bacteria.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Quinonas/farmacología , Compuestos de Sulfhidrilo/metabolismo , Western Blotting , Cisteína/metabolismo , Citoplasma/química , Electroforesis en Gel Bidimensional , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Espectrometría de Masas , Redes y Vías Metabólicas , Proteoma/análisis
15.
Anal Chim Acta ; 1069: 108-116, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31084736

RESUMEN

Multisensor systems with low-power consumption are emerging for the Internet of Things. In this work, we demonstrate the use of self-heated networked Ag-decorated SnO2 NW sensors integrated into a portable module for selective detection of H2S gas at low power consumption, and the integrated system is simulated as a virtual multisensor under varying heating powers for identifying and quantifying different reducing gases. The H2S gas-sensing characterisations at the different self-heating powers of 2-10 mW showed that the gas response significantly increased with the increase in Ag density decoration and the heated power strongly affected the gas-sensing performance and sensor stability. Excellent response of 21.2 to 0.5 ppm H2S gas was obtained at a low heating power of 2 mW with an acceptable response/recovery time of 18/980 s. The increase of the heating power over 20 mW can destroy the devices. The integrated system could selectively detect H2S at the heating power below 4 mW and H2, C2H5OH and NH3 gases at the heating power upon 4 mW. The virtual multisensor could discriminate qualitatively (with an accuracy of 100%) and quantitatively H2S, H2, NH3, C2H5OH (Ethanol) and CH3COCH3 (Aceton) gases with average errors of 13.5%, 14.7%, 16.8%, 16.9%, and 14.8%, respectively. The proposed sensing platform is a promising candidate for selective detection of H2S gas and virtual multisensor with low power consumption for mobile or wireless network devices.

16.
RSC Adv ; 9(24): 13887-13895, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35519568

RESUMEN

The highly toxic hydrogen sulphide (H2S) present in air can cause negative effects on human health. Thus, monitoring of this gas is vital in gas leak alarms and security. Efforts have been devoted to the fabrication and enhancement of the H2S-sensing performance of gas sensors. Herein, we used electron beam evaporation to decorate nickel oxide (NiO) nanoparticles on the surface of tin oxide (SnO2) nanowires to enhance their H2S gas-sensing performance. The synthesised NiO-SnO2 materials were characterised by field-emission scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy analysis. H2S gas-sensing characteristics were measured at various concentrations (1-10 ppm) at 200-350 °C. The results show that with effective decoration of NiO nanoparticles, the H2S gas-sensing characteristics of SnO2 nanowires are significantly enhanced by one or two orders compared with those of the bare material. The sensors showed an effective response to low-level concentrations of H2S in the range of 1-10 ppm, suitable for application in monitoring of H2S in biogas and in industrial controls. We also clarified the sensing mechanism of the sensor based on band structure and sulphurisation process.

17.
J Colloid Interface Sci ; 539: 315-325, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30594006

RESUMEN

We report a synthesis of magnetic nanoparticles chemically immobilized onto reduced graphene oxide sheets (referred to as rGO-Fe3O4 NPs) as a gas and vapor sensing platform with precisely designed particle size of 5, 10 and 20 nm to explore their influence of particle size on sensing performance. The rGO-Fe3O4 NP sensors have been investigated their responses to different gases and volatile organic compounds (VOCs) at part-per-million (ppm) levels. Results show that the Fe3O4 NPs with smaller size (5 and 10 nm) on the rGO surface led to a lower sensitivity, while particles of a size of 20 nm have a significant enhancement of sensitivity compared to the bare rGO sensor. The rGO-Fe3O4 NP20 sensor can detect trace amounts of NO2 gas and ethanol vapor at the 1 ppm and is highly selective to the NO2 and ethanol among other tested gases and VOCs, respectively. The particle size causes different distribution behaviour of NPs over rGO surface and interspaced between them, which results in deceased or increased the surface interactions between gas and graphene. The NPs themselves contained different defects level and the charge depletion layer that affect their adsorption gas/vapor molecules, which are explained for different sensing responses.

18.
J Hazard Mater ; 360: 6-16, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30075382

RESUMEN

ZnFe2O4 nanofiber gas sensors are cost-effectively fabricated by direct electrospinning on microelectrode chip with Pt interdigitated electrodes and subsequent calcination under different conditions to maximize their response to H2S gas. The synthesized nanofibers of approximately 30-100 nm in diameter show typical spider-net-like morphology of the electrospun nanofibers. The ZnFe2O4 nanofibers comprise many 10-25 nm nanograins, which results in multi-porous structures. Moreover, the nanofibers exhibit the single phase of cubic-spinel-structure ZnFe2O4. The density, crystallinity and grain size of ZnFe2O4 nanofiber that strongly affect gas-sensing properties can be optimized by controlling electrospun time, annealing temperature, annealing time and heating rate. Under optimal conditions, the ZnFe2O4 nanofiber sensors exhibit high sensitivity and selectivity to H2S at sub-ppm levels. Excellent gas-sensing performances are attributed to effects of multi-porous structure, nanograin size and crystallinity, which is explained by the sensing mechanisms of ZnFe2O4 nanofiber sensors to H2S gas.

19.
RSC Adv ; 8(35): 19449-19455, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35540984

RESUMEN

Metal oxide nanostructures have been extensively used in electrochemical devices due to their advantages, including high active surface area and chemical stability. However, the electrochemical properties of metal oxides are strongly dependent on their structural characteristics. We performed a comparative study on the electrochemical performance of nanoporous nickel oxide (NiO) nanosheets and nanowires. The advanced nanoporous NiO nanomaterials were synthesized by a facile hydrothermal method followed by thermal calcination. The synthesized nanomaterials, as characterized by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, X-ray diffraction, and nitrogen adsorption/desorption isotherms, demonstrated the nanoporosity and high crystallinity of the NiO nanosheets and nanowires. Cyclic voltammetry measurement was performed using a three-electrode system to evaluate the electrochemical properties of the synthesized materials. Results showed that the nanoporous NiO nanosheets possessed a higher current density than that of the nanowires by approximately ten times. Moreover, the nanoporous NiO nanosheets showed exceptionally high stability of almost 100%, after three cycles in strong alkaline environments, thereby suggesting possible application in electrochemical devices.

20.
RSC Adv ; 8(10): 5629-5639, 2018 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35542445

RESUMEN

ZnO nanostructures can be synthesized using different techniques for gas sensor applications, but different synthesis methods produce different morphologies, specific surface areas, crystal sizes, and physical properties, which consequently influence the gas-sensing properties of materials. Many parameters such as morphology, specific surface areas, crystal sizes, and defect level can influence the gas-sensing properties of ZnO nanostructures. However, it is not clear which parameter dominates the gas-sensing performance. This study clarified the correlation between crystal size, defect level, and gas-sensing properties of ZnO nanostructures prepared from hydrozincite counterparts by means of field emission scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction and photoluminescence spectra. Results showed that the average crystal size of the ZnO nanoparticles increased with thermal decomposition temperatures from 500 °C to 700 °C. However, the sample treated at 600 °C, which has the lowest visible-to-ultraviolet band intensity ratio showed the highest response to ethanol and NO2. These results suggested that defect level but not size is the main parameter dominating the sensor performance. The gas sensing mechanism was also elucidated on the basis of the correlation among decomposition temperatures, crystal size, defect level, and gas sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA