RESUMEN
Autozygosity is associated with rare Mendelian disorders and clinically relevant quantitative traits. We investigated associations between the fraction of the genome in runs of homozygosity (FROH) and common diseases in Genes & Health (n = 23,978 British South Asians), UK Biobank (n = 397,184), and 23andMe. We show that restricting analysis to offspring of first cousins is an effective way of reducing confounding due to social/environmental correlates of FROH. Within this group in G&H+UK Biobank, we found experiment-wide significant associations between FROH and twelve common diseases. We replicated associations with type 2 diabetes (T2D) and post-traumatic stress disorder via within-sibling analysis in 23andMe (median n = 480,282). We estimated that autozygosity due to consanguinity accounts for 5%-18% of T2D cases among British Pakistanis. Our work highlights the possibility of widespread non-additive genetic effects on common diseases and has important implications for global populations with high rates of consanguinity.
Asunto(s)
Consanguinidad , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Homocigoto , Fenotipo , Polimorfismo de Nucleótido Simple , Bancos de Muestras Biológicas , Genoma Humano , Predisposición Genética a la Enfermedad , Reino UnidoRESUMEN
Methods of estimating polygenic scores (PGSs) from genome-wide association studies are increasingly utilized. However, independent method evaluation is lacking, and method comparisons are often limited. Here, we evaluate polygenic scores derived via seven methods in five biobank studies (totaling about 1.2 million participants) across 16 diseases and quantitative traits, building on a reference-standardized framework. We conducted meta-analyses to quantify the effects of method choice, hyperparameter tuning, method ensembling, and the target biobank on PGS performance. We found that no single method consistently outperformed all others. PGS effect sizes were more variable between biobanks than between methods within biobanks when methods were well tuned. Differences between methods were largest for the two investigated autoimmune diseases, seropositive rheumatoid arthritis and type 1 diabetes. For most methods, cross-validation was more reliable for tuning hyperparameters than automatic tuning (without the use of target data). For a given target phenotype, elastic net models combining PGS across methods (ensemble PGS) tuned in the UK Biobank provided consistent, high, and cross-biobank transferable performance, increasing PGS effect sizes (ß coefficients) by a median of 5.0% relative to LDpred2 and MegaPRS (the two best-performing single methods when tuned with cross-validation). Our interactively browsable online-results and open-source workflow prspipe provide a rich resource and reference for the analysis of polygenic scoring methods across biobanks.
Asunto(s)
Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Herencia Multifactorial/genética , Fenotipo , Diabetes Mellitus Tipo 1/genética , Polimorfismo de Nucleótido Simple , Aprendizaje AutomáticoRESUMEN
Naturally occurring human genetic variants that are predicted to inactivate protein-coding genes provide an in vivo model of human gene inactivation that complements knockout studies in cells and model organisms. Here we report three key findings regarding the assessment of candidate drug targets using human loss-of-function variants. First, even essential genes, in which loss-of-function variants are not tolerated, can be highly successful as targets of inhibitory drugs. Second, in most genes, loss-of-function variants are sufficiently rare that genotype-based ascertainment of homozygous or compound heterozygous 'knockout' humans will await sample sizes that are approximately 1,000 times those presently available, unless recruitment focuses on consanguineous individuals. Third, automated variant annotation and filtering are powerful, but manual curation remains crucial for removing artefacts, and is a prerequisite for recall-by-genotype efforts. Our results provide a roadmap for human knockout studies and should guide the interpretation of loss-of-function variants in drug development.
Asunto(s)
Genes Esenciales/efectos de los fármacos , Genes Esenciales/genética , Mutación con Pérdida de Función/genética , Terapia Molecular Dirigida , Artefactos , Automatización , Consanguinidad , Exones/genética , Mutación con Ganancia de Función/genética , Frecuencia de los Genes , Técnicas de Silenciamiento del Gen , Heterocigoto , Homocigoto , Humanos , Proteína Huntingtina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedades Neurodegenerativas/genética , Proteínas Priónicas/genética , Reproducibilidad de los Resultados , Tamaño de la Muestra , Proteínas tau/genéticaRESUMEN
BACKGROUND: Reported association between statin use and cataract risk is controversial. The SLCO1B1 gene encodes a transport protein responsible for statin clearance. The aim of this study was to investigate a possible association between the SLCO1B1*5 reduced function variant and cataract risk in statin users of South Asian ethnicity. METHODS: The Genes & Health cohort consists of British-Bangladeshi and British-Pakistani participants from East London, Manchester and Bradford, UK. SLCO1B1*5 genotype was assessed with the Illumina GSAMD-24v3-0-EA chip. Medication data from primary care health record linkage was used to compare those who had regularly used statins compared to those who had not. Multivariable logistic regression was used to test for association between statin use and cataracts, adjusting for population characteristics and potential confounders in 36,513 participants. Multivariable logistic regression was used to test association between SLCO1B1*5 heterozygotes or homozygotes and cataracts, in subgroups having been regularly prescribed statins versus not. RESULTS: Statins were prescribed to 35% (12,704) of participants (average age 41 years old, 45% male). Non-senile cataract was diagnosed in 5% (1686) of participants. An apparent association between statins and non-senile cataract (12% in statin users and 0.8% in non-statin users) was negated by inclusion of confounders. In those prescribed a statin, presence of the SLCO1B1*5 genotype was independently associated with a decreased risk of non-senile cataract (OR 0.7 (CI 0.5-0.9, p 0.007)). CONCLUSIONS: Our findings suggest that there is no independent association between statin use and non-senile cataract risk after adjusting for confounders. Among statin users, the SLCO1B1*5 genotype is associated with a 30% risk reduction of non-senile cataracts. Stratification of on-drug cohorts by validated pharmacogenomic variants is a useful tool to support or repudiate adverse drug events in observational cohorts.
Asunto(s)
Catarata , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Masculino , Adulto , Femenino , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Genotipo , Catarata/inducido químicamente , Catarata/epidemiología , Catarata/genética , Transportador 1 de Anión Orgánico Específico del Hígado/genéticaRESUMEN
AIMS: CYP2C19 is a hepatic enzyme involved in the metabolism of antidepressants associated with increased gastrointestinal bleed (GIB) risk. The aim of our study was to explore a possible association between loss-of-function CYP2C19 genotypes and GIB in South Asian ancestry participants prescribed antidepressants. METHODS: Genes & Health participants with a record in Barts Health NHS Trust (N 22 753) were studied using a cross-sectional approach. CYP2C19 diplotypes were assessed and metabolizer type inferred from consortia guidance. Fisher's exact test was used to compare the prevalence of GIB in different metabolizer categories. Multivariable regression was used to test for association between antidepressant prescriptions and GIB, and between CYP2C19 metabolizer state and GIB in the subcohort prescribed antidepressants. RESULTS: Antidepressants were frequently prescribed (47%, N = 10 612). A total of 864 participants (4%) had a GIB; 534 (62%) had been prescribed a CYP2C19 metabolized antidepressant. There was an independent association between antidepressant prescriptions and GIB events (odds ratio 1.8, confidence interval 1.5-2.0, P < 0.0001). There was no relationship between CYP2C19 inferred poor (P 0.56) or intermediate (P 0.53) metabolizer status and GIB in those prescribed an antidepressant in unadjusted analysis. A multivariable logistic regression model did not show an independent association between poor (P 0.54) or intermediate (P 0.62) CYP2C19 metabolizers and GIB in the subcohort prescribed antidepressants. CONCLUSIONS: CYP2C19 dependent antidepressants are associated with increased GIB prevalence. GIB appeared independent from CYP2C19 metabolizer genotype in individuals who had been prescribed antidepressants. Precision dosing based on CYP2C19 genetic information alone is unlikely to reduce GIB prevalence.
Asunto(s)
Antidepresivos , Citocromo P-450 CYP2C19 , Hemorragia Gastrointestinal , Humanos , Alelos , Antidepresivos/efectos adversos , Antidepresivos/metabolismo , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP2C19/genética , Genotipo , Prevalencia , Mutación con Pérdida de Función , Hemorragia Gastrointestinal/inducido químicamente , Hemorragia Gastrointestinal/etnología , Hemorragia Gastrointestinal/genética , Personas del Sur de Asia/genética , Sur de Asia/etnología , Reino UnidoRESUMEN
BACKGROUND: Type 2 diabetes (T2D) is highly prevalent in British South Asians, yet they are underrepresented in research. Genes & Health (G&H) is a large, population study of British Pakistanis and Bangladeshis (BPB) comprising genomic and routine health data. We assessed the extent to which genetic risk for T2D is shared between BPB and European populations (EUR). We then investigated whether the integration of a polygenic risk score (PRS) for T2D with an existing risk tool (QDiabetes) could improve prediction of incident disease and the characterisation of disease subtypes. METHODS AND FINDINGS: In this observational cohort study, we assessed whether common genetic loci associated with T2D in EUR individuals were replicated in 22,490 BPB individuals in G&H. We replicated fewer loci in G&H (n = 76/338, 22%) than would be expected given power if all EUR-ascertained loci were transferable (n = 101, 30%; p = 0.001). Of the 27 transferable loci that were powered to interrogate this, only 9 showed evidence of shared causal variants. We constructed a T2D PRS and combined it with a clinical risk instrument (QDiabetes) in a novel, integrated risk tool (IRT) to assess risk of incident diabetes. To assess model performance, we compared categorical net reclassification index (NRI) versus QDiabetes alone. In 13,648 patients free from T2D followed up for 10 years, NRI was 3.2% for IRT versus QDiabetes (95% confidence interval (CI): 2.0% to 4.4%). IRT performed best in reclassification of individuals aged less than 40 years deemed low risk by QDiabetes alone (NRI 5.6%, 95% CI 3.6% to 7.6%), who tended to be free from comorbidities and slim. After adjustment for QDiabetes score, PRS was independently associated with progression to T2D after gestational diabetes (hazard ratio (HR) per SD of PRS 1.23, 95% CI 1.05 to 1.42, p = 0.028). Using cluster analysis of clinical features at diabetes diagnosis, we replicated previously reported disease subgroups, including Mild Age-Related, Mild Obesity-related, and Insulin-Resistant Diabetes, and showed that PRS distribution differs between subgroups (p = 0.002). Integrating PRS in this cluster analysis revealed a Probable Severe Insulin Deficient Diabetes (pSIDD) subgroup, despite the absence of clinical measures of insulin secretion or resistance. We also observed differences in rates of progression to micro- and macrovascular complications between subgroups after adjustment for confounders. Study limitations include the absence of an external replication cohort and the potential biases arising from missing or incorrect routine health data. CONCLUSIONS: Our analysis of the transferability of T2D loci between EUR and BPB indicates the need for larger, multiancestry studies to better characterise the genetic contribution to disease and its varied aetiology. We show that a T2D PRS optimised for this high-risk BPB population has potential clinical application in BPB, improving the identification of T2D risk (especially in the young) on top of an established clinical risk algorithm and aiding identification of subgroups at diagnosis, which may help future efforts to stratify care and treatment of the disease.
Asunto(s)
Diabetes Mellitus Tipo 2 , Pueblo Asiatico , Estudios de Cohortes , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Insulina , Pakistán/epidemiología , Factores de RiesgoRESUMEN
PURPOSE: To investigate if specific exon 38 or 39 KMT2D missense variants (MVs) cause a condition distinct from Kabuki syndrome type 1 (KS1). METHODS: Multiple individuals, with MVs in exons 38 or 39 of KMT2D that encode a highly conserved region of 54 amino acids flanked by Val3527 and Lys3583, were identified and phenotyped. Functional tests were performed to study their pathogenicity and understand the disease mechanism. RESULTS: The consistent clinical features of the affected individuals, from seven unrelated families, included choanal atresia, athelia or hypoplastic nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies, hearing loss, external ear malformations, and thyroid abnormalities. None of the individuals had intellectual disability. The frequency of clinical features, objective software-based facial analysis metrics, and genome-wide peripheral blood DNA methylation patterns in these patients were significantly different from that of KS1. Circular dichroism spectroscopy indicated that these MVs perturb KMT2D secondary structure through an increased disordered to É-helical transition. CONCLUSION: KMT2D MVs located in a specific region spanning exons 38 and 39 and affecting highly conserved residues cause a novel multiple malformations syndrome distinct from KS1. Unlike KMT2D haploinsufficiency in KS1, these MVs likely result in disease through a dominant negative mechanism.
Asunto(s)
Anomalías Múltiples , Enfermedades Hematológicas , Enfermedades Vestibulares , Anomalías Múltiples/genética , Cara/anomalías , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/genética , Humanos , Mutación , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/genéticaRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
A substantial number of individuals with bone marrow failure (BMF) present with one or more extra-hematopoietic abnormality. This suggests a constitutional or inherited basis, and yet many of them do not fit the diagnostic criteria of the known BMF syndromes. Through exome sequencing, we have now identified a subgroup of these individuals, defined by germline biallelic mutations in DNAJC21 (DNAJ homolog subfamily C member 21). They present with global BMF, and one individual developed a hematological cancer (acute myeloid leukemia) in childhood. We show that the encoded protein associates with rRNA and plays a highly conserved role in the maturation of the 60S ribosomal subunit. Lymphoblastoid cells obtained from an affected individual exhibit increased sensitivity to the transcriptional inhibitor actinomycin D and reduced amounts of rRNA. Characterization of mutations revealed impairment in interactions with cofactors (PA2G4, HSPA8, and ZNF622) involved in 60S maturation. DNAJC21 deficiency resulted in cytoplasmic accumulation of the 60S nuclear export factor PA2G4, aberrant ribosome profiles, and increased cell death. Collectively, these findings demonstrate that mutations in DNAJC21 cause a cancer-prone BMF syndrome due to corruption of early nuclear rRNA biogenesis and late cytoplasmic maturation of the 60S subunit.
Asunto(s)
Anemia Aplásica/complicaciones , Anemia Aplásica/genética , Enfermedades de la Médula Ósea/complicaciones , Enfermedades de la Médula Ósea/genética , Proteínas del Choque Térmico HSP40/genética , Hemoglobinuria Paroxística/complicaciones , Hemoglobinuria Paroxística/genética , Mutación/genética , Neoplasias/complicaciones , Neoplasias/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/patología , Secuencia de Aminoácidos , Trastornos de Fallo de la Médula Ósea , Proliferación Celular , Forma de la Célula , Niño , Preescolar , Femenino , Proteínas del Choque Térmico HSP40/química , Humanos , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/genética , Masculino , Unión Proteica , ARN Ribosómico/biosíntesisRESUMEN
Shared aetiopathogenic factors among immune-mediated diseases have long been suggested by their co-familiality and co-occurrence, and molecular support has been provided by analysis of human leukocyte antigen (HLA) haplotypes and genome-wide association studies. The interrelationships can now be better appreciated following the genotyping of large immune disease sample sets on a shared SNP array: the 'Immunochip'. Here, we systematically analyse loci shared among major immune-mediated diseases. This reveals that several diseases share multiple susceptibility loci, but there are many nuances. The most associated variant at a given locus frequently differs and, even when shared, the same allele often has opposite associations. Interestingly, risk alleles conferring the largest effect sizes are usually disease-specific. These factors help to explain why early evidence of extensive 'sharing' is not always reflected in epidemiological overlap.
Asunto(s)
Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/metabolismo , Sitios de Carácter Cuantitativo , Transducción de Señal , Alelos , Animales , Mapeo Cromosómico , Ambiente , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , HumanosRESUMEN
Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect.
Asunto(s)
Enfermedades Autoinmunes/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Sistemas de Lectura Abierta/genética , Exones/genética , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Modelos Genéticos , Mutación/genética , Fenotipo , Tamaño de la Muestra , Reino Unido , Población Blanca/genéticaRESUMEN
BACKGROUND: C-reactive protein (CRP) is associated with immune, cardiometabolic, and psychiatric traits and diseases. Yet it is inconclusive whether these associations are causal. METHODS AND FINDINGS: We performed Mendelian randomization (MR) analyses using two genetic risk scores (GRSs) as instrumental variables (IVs). The first GRS consisted of four single nucleotide polymorphisms (SNPs) in the CRP gene (GRSCRP), and the second consisted of 18 SNPs that were significantly associated with CRP levels in the largest genome-wide association study (GWAS) to date (GRSGWAS). To optimize power, we used summary statistics from GWAS consortia and tested the association of these two GRSs with 32 complex somatic and psychiatric outcomes, with up to 123,865 participants per outcome from populations of European ancestry. We performed heterogeneity tests to disentangle the pleiotropic effect of IVs. A Bonferroni-corrected significance level of less than 0.0016 was considered statistically significant. An observed p-value equal to or less than 0.05 was considered nominally significant evidence for a potential causal association, yet to be confirmed. The strengths (F-statistics) of the IVs were 31.92-3,761.29 and 82.32-9,403.21 for GRSCRP and GRSGWAS, respectively. CRP GRSGWAS showed a statistically significant protective relationship of a 10% genetically elevated CRP level with the risk of schizophrenia (odds ratio [OR] 0.86 [95% CI 0.79-0.94]; p < 0.001). We validated this finding with individual-level genotype data from the schizophrenia GWAS (OR 0.96 [95% CI 0.94-0.98]; p < 1.72 × 10-6). Further, we found that a standardized CRP polygenic risk score (CRPPRS) at p-value thresholds of 1 × 10-4, 0.001, 0.01, 0.05, and 0.1 using individual-level data also showed a protective effect (OR < 1.00) against schizophrenia; the first CRPPRS (built of SNPs with p < 1 × 10-4) showed a statistically significant (p < 2.45 × 10-4) protective effect with an OR of 0.97 (95% CI 0.95-0.99). The CRP GRSGWAS showed that a 10% increase in genetically determined CRP level was significantly associated with coronary artery disease (OR 0.88 [95% CI 0.84-0.94]; p < 2.4 × 10-5) and was nominally associated with the risk of inflammatory bowel disease (OR 0.85 [95% CI 0.74-0.98]; p < 0.03), Crohn disease (OR 0.81 [95% CI 0.70-0.94]; p < 0.005), psoriatic arthritis (OR 1.36 [95% CI 1.00-1.84]; p < 0.049), knee osteoarthritis (OR 1.17 [95% CI 1.01-1.36]; p < 0.04), and bipolar disorder (OR 1.21 [95% CI 1.05-1.40]; p < 0.007) and with an increase of 0.72 (95% CI 0.11-1.34; p < 0.02) mm Hg in systolic blood pressure, 0.45 (95% CI 0.06-0.84; p < 0.02) mm Hg in diastolic blood pressure, 0.01 ml/min/1.73 m2 (95% CI 0.003-0.02; p < 0.005) in estimated glomerular filtration rate from serum creatinine, 0.01 g/dl (95% CI 0.0004-0.02; p < 0.04) in serum albumin level, and 0.03 g/dl (95% CI 0.008-0.05; p < 0.009) in serum protein level. However, after adjustment for heterogeneity, neither GRS showed a significant effect of CRP level (at p < 0.0016) on any of these outcomes, including coronary artery disease, nor on the other 20 complex outcomes studied. Our study has two potential limitations: the limited variance explained by our genetic instruments modeling CRP levels in blood and the unobserved bias introduced by the use of summary statistics in our MR analyses. CONCLUSIONS: Genetically elevated CRP levels showed a significant potentially protective causal relationship with risk of schizophrenia. We observed nominal evidence at an observed p < 0.05 using either GRSCRP or GRSGWAS-with persistence after correction for heterogeneity-for a causal relationship of elevated CRP levels with psoriatic osteoarthritis, rheumatoid arthritis, knee osteoarthritis, systolic blood pressure, diastolic blood pressure, serum albumin, and bipolar disorder. These associations remain yet to be confirmed. We cannot verify any causal effect of CRP level on any of the other common somatic and neuropsychiatric outcomes investigated in the present study. This implies that interventions that lower CRP level are unlikely to result in decreased risk for the majority of common complex outcomes.
Asunto(s)
Proteína C-Reactiva/genética , Estudio de Asociación del Genoma Completo , Cardiopatías/genética , Enfermedades del Sistema Inmune/genética , Análisis de la Aleatorización Mendeliana , Trastornos Mentales/genética , Enfermedades Metabólicas/genética , Proteína C-Reactiva/metabolismo , Genotipo , Humanos , Polimorfismo de Nucleótido SimpleRESUMEN
Vertebrate organogenesis is critically sensitive to gene dosage and even subtle variations in the expression levels of key genes may result in a variety of tissue anomalies. MicroRNAs (miRNAs) are fundamental regulators of gene expression and their role in vertebrate tissue patterning is just beginning to be elucidated. To gain further insight into this issue, we analysed the transcriptomic consequences of manipulating the expression of miR-204 in the Medaka fish model system. We used RNA-Seq and an innovative bioinformatics approach, which combines conventional differential expression analysis with the behavior expected by miR-204 targets after its overexpression and knockdown. With this approach combined with a correlative analysis of the putative targets, we identified a wider set of miR-204 target genes belonging to different pathways. Together, these approaches confirmed that miR-204 has a key role in eye development and further highlighted its putative function in neural differentiation processes, including axon guidance as supported by in vivo functional studies. Together, our results demonstrate the advantage of integrating next-generation sequencing and bioinformatics approaches to investigate miRNA biology and provide new important information on the role of miRNAs in the control of axon guidance and more broadly in nervous system development.
Asunto(s)
Axones/fisiología , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Neurogénesis/genética , Oryzias/genética , Animales , Axones/ultraestructura , Biología Computacional , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Animales , Oryzias/embriología , Oryzias/metabolismo , Retina/embriología , Retina/metabolismo , Retina/ultraestructura , Análisis de Secuencia de ARNRESUMEN
We tested 310,605 SNPs for association in 778 individuals with celiac disease and 1,422 controls. Outside the HLA region, the most significant finding (rs13119723; P = 2.0 x 10(-7)) was in the KIAA1109-TENR-IL2-IL21 linkage disequilibrium block. We independently confirmed association in two further collections (strongest association at rs6822844, 24 kb 5' of IL21; meta-analysis P = 1.3 x 10(-14), odds ratio = 0.63), suggesting that genetic variation in this region predisposes to celiac disease.
Asunto(s)
Enfermedad Celíaca/genética , Predisposición Genética a la Enfermedad , Variación Genética , Genoma Humano , Interleucina-2/genética , Interleucinas/genética , Animales , Cromosomas Humanos Par 4/genética , Humanos , Desequilibrio de Ligamiento , Ratones , Polimorfismo de Nucleótido Simple , Factores de RiesgoRESUMEN
It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human subjects and four primary non-blood tissues (liver, subcutaneous, and visceral adipose tissue and skeletal muscle) from 85 subjects. We characterized four different mechanisms for 2,072 probes that show tissue-dependent genetic regulation between blood and non-blood tissues: on average 33.2% only showed cis-regulation in non-blood tissues; 14.5% of the eQTL probes were regulated by different, independent SNPs depending on the tissue of investigation. 47.9% showed a different effect size although they were regulated by the same SNPs. Surprisingly, we observed that 4.4% were regulated by the same SNP but with opposite allelic direction. We show here that SNPs that are located in transcriptional regulatory elements are enriched for tissue-dependent regulation, including SNPs at 3' and 5' untranslated regions (Pâ=â1.84×10(-5) and 4.7×10(-4), respectively) and SNPs that are synonymous-coding (Pâ=â9.9×10(-4)). SNPs that are associated with complex traits more often exert a tissue-dependent effect on gene expression (Pâ=â2.6×10(-10)). Our study yields new insights into the genetic basis of tissue-dependent expression and suggests that complex trait associated genetic variants have even more complex regulatory effects than previously anticipated.
Asunto(s)
Proteínas Sanguíneas/genética , Regulación de la Expresión Génica , Grasa Intraabdominal/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Tejido Subcutáneo/metabolismo , Adolescente , Adulto , Anciano , Alelos , Femenino , Perfilación de la Expresión Génica , Genoma Humano , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Especificidad de Órganos , Secuencias Reguladoras de Ácidos Nucleicos/genéticaRESUMEN
BACKGROUND: The majority of coeliac disease (CD) patients are not being properly diagnosed and therefore remain untreated, leading to a greater risk of developing CD-associated complications. The major genetic risk heterodimer, HLA-DQ2 and DQ8, is already used clinically to help exclude disease. However, approximately 40% of the population carry these alleles and the majority never develop CD. OBJECTIVE: We explored whether CD risk prediction can be improved by adding non-HLA-susceptible variants to common HLA testing. DESIGN: We developed an average weighted genetic risk score with 10, 26 and 57 single nucleotide polymorphisms (SNP) in 2675 cases and 2815 controls and assessed the improvement in risk prediction provided by the non-HLA SNP. Moreover, we assessed the transferability of the genetic risk model with 26 non-HLA variants to a nested case-control population (n=1709) and a prospective cohort (n=1245) and then tested how well this model predicted CD outcome for 985 independent individuals. RESULTS: Adding 57 non-HLA variants to HLA testing showed a statistically significant improvement compared to scores from models based on HLA only, HLA plus 10 SNP and HLA plus 26 SNP. With 57 non-HLA variants, the area under the receiver operator characteristic curve reached 0.854 compared to 0.823 for HLA only, and 11.1% of individuals were reclassified to a more accurate risk group. We show that the risk model with HLA plus 26 SNP is useful in independent populations. CONCLUSIONS: Predicting risk with 57 additional non-HLA variants improved the identification of potential CD patients. This demonstrates a possible role for combined HLA and non-HLA genetic testing in diagnostic work for CD.
Asunto(s)
Enfermedad Celíaca/diagnóstico , Técnicas de Apoyo para la Decisión , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Antígenos HLA-DQ/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Enfermedad Celíaca/genética , Femenino , Marcadores Genéticos , Humanos , Modelos Logísticos , Masculino , Modelos Genéticos , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Curva ROC , Medición de RiesgoRESUMEN
A multidisciplinary panel of 18 physicians and 3 non-physicians from eight countries (Sweden, UK, Argentina, Australia, Italy, Finland, Norway and the USA) reviewed the literature on diagnosis and management of adult coeliac disease (CD). This paper presents the recommendations of the British Society of Gastroenterology. Areas of controversies were explored through phone meetings and web surveys. Nine working groups examined the following areas of CD diagnosis and management: classification of CD; genetics and immunology; diagnostics; serology and endoscopy; follow-up; gluten-free diet; refractory CD and malignancies; quality of life; novel treatments; patient support; and screening for CD.
Asunto(s)
Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/diagnóstico , Dieta Sin Gluten , Duodeno/patología , Inmunoglobulina A/sangre , Adulto , Biopsia , Enfermedad Celíaca/patología , Endoscopía Gastrointestinal , Proteínas de Unión al GTP , Gliadina/inmunología , Prueba de Histocompatibilidad , Humanos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/inmunologíaRESUMEN
Autosomal-recessive exfoliative ichthyosis presents shortly after birth as dry, scaly skin over most of the body with coarse peeling of nonerythematous skin on the palms and soles, which is exacerbated by excessive moisture and minor trauma. Using whole-genome homozygosity mapping, candidate-gene analysis and deep sequencing, we have identified loss-of-function mutations in the gene for protease inhibitor cystatin A (CSTA) as the underlying genetic cause of exfoliative ichthyosis. We found two homozygous mutations, a splice-site and a nonsense mutation, in two consanguineous families of Bedouin and Turkish origin. Electron microscopy of skin biopsies from affected individuals revealed that the level of detachment occurs in the basal and lower suprabasal layers. In addition, in vitro modeling suggests that in the absence of cystatin A protein, there is a cell-cell adhesion defect in human keratinocytes that is particularly prominent when cells are subject to mechanical stress. We show here evidence of a key role for a protease inhibitor in epidermal adhesion within the lower layers of the human epidermis.
Asunto(s)
Cistatina A/genética , Ictiosis/genética , Mutación , Inhibidores de Proteasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Adhesión Celular , Epidermis/metabolismo , Salud de la Familia , Femenino , Pie/patología , Genoma , Homocigoto , Humanos , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Linaje , Homología de Secuencia de Aminoácido , Estrés MecánicoRESUMEN
We performed genetic and immunohistochemical studies in a sister and brother with autosomal recessive neonatal inflammatory skin and bowel lesions. The girl died suddenly at 12 years of age from parvovirus B19-associated myocarditis; her brother had mild cardiomyopathy. We identified a loss-of-function mutation in ADAM17, which encodes a disintegrin and metalloproteinase 17 (also called tumor necrosis factor α [TNF-α]-converting enzyme, or TACE), as the probable cause of this syndrome. Peripheral-blood mononuclear cells (PBMCs) obtained from the brother at 17 years of age showed high levels of lipopolysaccharide-induced production of interleukin-1ß and interleukin-6 but impaired release of TNF-α. Despite repeated skin infections, this young man has led a relatively normal life. (Funded by Barts and the London Charity and the European Commission Seventh Framework Programme.).