Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 107(9): 6437-6450, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38754824

RESUMEN

The use of essential oils (EO) has attracted interest in the food industry because of their wide range of beneficial properties. In this study, a new functional yogurt was developed using 2 EO, marjoram and geranium, at 3 different concentrations (0.2%, 0.4%, and 0.6% vol/vol). The physicochemical properties, including syneresis, viscosity, pH, and chemical composition; bioactivities, including antioxidant activity, anticancer and antibacterial effects, total phenolic content (TPC), and total flavonoid content (TFC); and sensory characteristics of the developed yogurt were evaluated. The findings indicated that the yogurts fortified with 0.6% marjoram or geranium exhibited higher viscosity and lower syneresis compared with other treatments. The yogurt supplemented with 0.6% marjoram displayed significant antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli. In addition, the yogurt enriched with geranium and marjoram oils at a concentration of 0.6% had notably significant (P < 0.05) higher TFC levels compared with the control sample and other concentrations. In the same context, in terms of TPC, yogurt supplemented with 0.6% marjoram displayed significantly (P < 0.05) elevated levels in comparison to the other samples tested. Yogurt enriched with marjoram oil exhibited noteworthy antioxidant activity, followed by geranium oil, compared with the control samples. The yogurt supplemented with 0.6% marjoram demonstrated strong radical scavenging activity, and the yogurt fortified with 0.6% geranium showed higher anticancer activity against HepG2 human liver carcinoma cells and oxidative stress enzyme activities. Among the various concentrations of EO tested, the yogurts fortified with 0.6% marjoram or geranium EO exhibited the most favorable outcomes, followed by 0.4% marjoram or geranium. To summarize, geranium and marjoram EO can be used as a potential nutritious ingredient and as a natural preservative for milk and related products.


Asunto(s)
Geranium , Aceites Volátiles , Yogur , Yogur/análisis , Aceites Volátiles/farmacología , Geranium/química , Animales , Antioxidantes/farmacología , Antibacterianos/farmacología , Listeria monocytogenes/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
2.
Compr Rev Food Sci Food Saf ; 23(5): e13420, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39217506

RESUMEN

Flavor is a major sensory attribute affecting consumers' preference for cheese products. Differences in cheesemaking change the cheese microenvironment, thereby affecting cheese flavor profiles. A framework for tuning cheese flavor is proposed in this study, which depicts the full picture of flavor development and modulation, from manufacturing and ripening factors through the main biochemical pathways to flavor compounds and flavor notes. Taking semi-hard and hard cheeses as examples, this review describes how cheese flavor profiles are affected by milk type and applied treatment, fat and salt content, microbiota composition and microbial interactions, ripening time, temperature, and environmental humidity, together with packaging method and material. Moreover, these factors are linked to flavor profiles through their effects on proteolysis, the further catabolism of amino acids, and lipolysis. Acids, alcohols, ketones, esters, aldehydes, lactones, and sulfur compounds are key volatiles, which elicit fruity, sweet, rancid, green, creamy, pungent, alcoholic, nutty, fatty, and sweaty flavor notes, contributing to the overall flavor profiles. Additionally, this review demonstrates how data-driven modeling techniques can link these influencing factors to resulting flavor profiles. This is done by providing a comprehensive review on the (i) identification of key factors and flavor compounds, (ii) discrimination of cheeses, and (iii) prediction of flavor notes. Overall, this review provides knowledge tools for cheese flavor modulation and sheds light on using data-driven modeling techniques to aid cheese flavor analysis and flavor prediction.


Asunto(s)
Queso , Gusto , Queso/análisis , Queso/microbiología , Manipulación de Alimentos/métodos , Animales , Leche/química , Humanos
3.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36708160

RESUMEN

AIMS: The global level of carbon dioxide and temperature in the atmosphere is expected to increase, which may affect the survival of the stress-adapted bacteria. In this study, the effect of temperature and dissolved carbon dioxide on the growth rate of Escherichia coli-eGFP tagged strain was studied, thus assessing its response to induced environmental stress factors. METHODS AND RESULTS: A kinetic assay has been performed using a microplate reader with a spectrofluorometer to determine the specific growth rates. Polynomial models were developed to correlate the environmental conditions of temperature and carbon dioxide with Escherichia coli BL21 (DE3) growth in culture media and dairy by-products. At a temperature of 42°C, as the dissolved CO2 increased, a decrease in µmax by 0.76 h-1 was observed. In contrast, at 27°C, this increase led to an increase in µmax by 0.99 h-1. Moreover, a correction factor was added when applying the model to dairy whey samples. CONCLUSIONS: The application of this developed model can be considered a useful tool for predicting the growth of Escherichia coli using climate projections.


Asunto(s)
Dióxido de Carbono , Escherichia coli , Temperatura , Cinética , Medios de Cultivo/farmacología
4.
J Appl Microbiol ; 133(3): 1919-1939, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35751580

RESUMEN

AIMS: This research aimed to develop and validate a cultivation and monitoring protocol that is suitable for a surrogate microbial community that accounts for the gut microbiota of the ileum of the small intestine. METHODS AND RESULTS: Five bacterial species have been selected as representatives of the ileal gut microbiota and a general anaerobic medium (MS-BHI, as minimally supplemented brain heart infusion) has been constructed and validated against BCCM/LGM recommended and commercial media. Moreover, appropriate selective/differential media have been investigated for monitoring each ileal gut microbiota surrogate. Results showed that MS-BHI was highly efficient in displaying individual and collective behaviour of the ileal gut microbiota species, when compared with other types of media. Likewise, the selective/differential media managed to identify and describe the behaviour of their targeted species. CONCLUSIONS: MS-BHI renders a highly efficient, inexpensive and easy-to-prepare cultivation and enumeration alternative for the surrogate ileal microbiota species. Additionally, the selective/differential media can identify and quantify the bacteria of the surrogate ileal microbial community. SIGNIFICANCE AND IMPACT OF STUDY: The selected gut microbiota species can represent an in vitro ileal community, forming the basis for future studies on small intestinal microbiota. MS-BHI and the proposed monitoring protocol can be used as a standard for gut microbiota studies that utilize conventional microbiological techniques.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Bacterias/genética , Íleon/microbiología , Intestino Delgado
5.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31175191

RESUMEN

Food microstructure significantly affects microbial growth dynamics, but knowledge concerning the exact influencing mechanisms at a microscopic scale is limited. The food microstructural influence on Listeria monocytogenes (green fluorescent protein strain) growth at 10°C in fish-based food model systems was investigated by confocal laser scanning microscopy. The model systems had different microstructures, i.e., liquid, xanthan (high-viscosity liquid), aqueous gel, and emulsion and gelled emulsion systems varying in fat content. Bacteria grew as single cells, small aggregates, and microcolonies of different sizes (based on colony radii [size I, 1.5 to 5.0 µm; size II, 5.0 to 10.0 µm; size III, 10.0 to 15.0 µm; and size IV, ≥15 µm]). In the liquid, small aggregates and size I microcolonies were predominantly present, while size II and III microcolonies were predominant in the xanthan and aqueous gel. Cells in the emulsions and gelled emulsions grew in the aqueous phase and on the fat-water interface. A microbial adhesion to solvent assay demonstrated limited bacterial nonpolar solvent affinities, implying that this behavior was probably not caused by cell surface hydrophobicity. In systems containing 1 and 5% fat, the largest cell volume was mainly represented by size I and II microcolonies, while at 10 and 20% fat a few size IV microcolonies comprised nearly the total cell volume. Microscopic results (concerning, e.g., growth morphology, microcolony size, intercolony distances, and the preferred phase for growth) were related to previously obtained macroscopic growth dynamics in the model systems for an L. monocytogenes strain cocktail, leading to more substantiated explanations for the influence of food microstructural aspects on lag phase duration and growth rate.IMPORTANCEListeria monocytogenes is one of the most hazardous foodborne pathogens due to the high fatality rate of the disease (i.e., listeriosis). In this study, the growth behavior of L. monocytogenes was investigated at a microscopic scale in food model systems that mimic processed fish products (e.g., fish paté and fish soup), and the results were related to macroscopic growth parameters. Many studies have previously focused on the food microstructural influence on microbial growth. The novelty of this work lies in (i) the microscopic investigation of products with a complex composition and/or structure using confocal laser scanning microscopy and (ii) the direct link to the macroscopic level. Growth behavior (i.e., concerning bacterial growth morphology and preferred phase for growth) was more complex than assumed in common macroscopic studies. Consequently, the effectiveness of industrial antimicrobial food preservation technologies (e.g., thermal processing) might be overestimated for certain products, which may have critical food safety implications.


Asunto(s)
Grasas/análisis , Productos Pesqueros/análisis , Productos Pesqueros/microbiología , Listeria monocytogenes/crecimiento & desarrollo , Animales , Recuento de Colonia Microbiana , Peces , Microbiología de Alimentos , Conservación de Alimentos , Cinética , Listeria monocytogenes/química , Modelos Biológicos , Viscosidad
6.
Food Microbiol ; 84: 103267, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31421789

RESUMEN

The development of more accurate predictive models that describe the microbial kinetics of mild thermal treatments of foods requires knowledge concerning the influence of food microstructure and initial cell conditions on foodborne pathogens' inactivation kinetics. The effect of food microstructure and initial cell conditions on thermal inactivation kinetics and sublethal injury (SI) of Listeria monocytogenes was investigated at 59, 64 and 69°C. Fish-based food model systems with different microstructures, possessing minimal compositional and physicochemical variations, were used. L. monocytogenes growth morphology had no significant influence on thermal inactivation kinetics. A gelled matrix resulted in a lower specific inactivation rate kmax and a higher residual cell population Nres, while the presence of fat droplets resulted in a higherkmaxand did not influenceNres. SI was higher in viscous than in gelled systems and more prominent for cells that were grown inside the matrix. Hence, predictive thermal inactivation models could benefit from the inclusion of factors related to the nature of the food matrix and fat properties. Starting inactivation from cells that were grown inside the matrix, resulted in lower (i.e., fail-safe)kmaxvalues and more uncertainty onNres as compared to starting from cells grown at optimal conditions.


Asunto(s)
Peces/microbiología , Microbiología de Alimentos/métodos , Conservación de Alimentos , Listeria monocytogenes/fisiología , Viabilidad Microbiana , Temperatura , Animales , Recuento de Colonia Microbiana , Contaminación de Alimentos/prevención & control , Manipulación de Alimentos , Cinética , Listeria monocytogenes/crecimiento & desarrollo , Modelos Biológicos , Alimentos Marinos/microbiología
7.
Food Microbiol ; 72: 214-219, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29407400

RESUMEN

Modelling and simulation of microbial dynamics as a function of processing, transportation and storage conditions is a useful tool to improve microbial food safety and quality. The goal of this research is to improve an existing methodology for building mechanistic predictive models based on the environmental conditions. The effect of environmental conditions on microbial dynamics is often described by combining the separate effects in a multiplicative way (gamma concept). This idea was extended further in this work by including the effects of the lag and stationary growth phases on microbial growth rate as independent gamma factors. A mechanistic description of the stationary phase as a function of pH was included, based on a novel class of models that consider product inhibition. Experimental results on Escherichia coli growth dynamics indicated that also the parameters of the product inhibition equations can be modelled with the gamma approach. This work has extended a modelling methodology, resulting in predictive models that are (i) mechanistically inspired, (ii) easily identifiable with a limited work load and (iii) easily extended to additional environmental conditions.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Microbiología de Alimentos/métodos , Recuento de Colonia Microbiana , Escherichia coli/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Biológicos , Temperatura
8.
Food Microbiol ; 76: 504-512, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30166180

RESUMEN

Building secondary models that describe the growth rate as a function of multiple environmental conditions is often very labour intensive and costly. As such, the current research aims to assist in decreasing the required experimental effort by studying the efficacy of both design of experiments (DOE) and optimal experimental designs (OED) techniques. This is the first research in predictive microbiology (i) to make a comparison of these techniques based on the (relative) model prediction uncertainty of the obtained models and (ii) to compare OED criteria for the design of experiments with static (instead of dynamic) environmental conditions. A comparison of the DOE techniques demonstrated that the inscribed central composite design and full factorial design were most suitable. Five conventional and two tailor made OED criteria were tested. The commonly used D-criterion performed best out of the conventional designs and almost equally well as the best of the dedicated criteria. Moreover, the modelling results of the D-criterion were less dependent on the experimental variability and differences in the microbial response than the two selected DOE techniques. Finally, it was proven that solving the optimisation of the D-criterion can be made more efficient by considering the sensitivities of the growth rate relative to its value as Jacobian matrix instead of the sensitivities of the cell density measurements.


Asunto(s)
Bacterias/crecimiento & desarrollo , Proyectos de Investigación , Bacterias/química , Cinética , Modelos Biológicos
9.
Food Microbiol ; 45(Pt B): 179-88, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25500383

RESUMEN

Traditional kinetic models in predictive microbiology reliably predict macroscopic dynamics of planktonically-growing cell cultures in homogeneous liquid food systems. However, most food products have a semi-solid structure, where microorganisms grow locally in colonies. Individual colony cells exhibit strongly different and non-normally distributed behavior due to local nutrient competition. As a result, traditional models considering average population behavior in a homogeneous system do not describe colony dynamics in full detail. To incorporate local resource competition and individual cell differences, an individual-based modeling approach has been applied to Escherichia coli K-12 MG1655 colonies, considering the microbial cell as modeling unit. The first contribution of this individual-based model is to describe single colony growth under nutrient-deprived conditions. More specifically, the linear and stationary phase in the evolution of the colony radius, the evolution from a disk-like to branching morphology, and the emergence of a starvation zone in the colony center are simulated and compared to available experimental data. These phenomena occur earlier at more severe nutrient depletion conditions, i.e., at lower nutrient diffusivity and initial nutrient concentration in the medium. Furthermore, intercolony interactions have been simulated. Higher inoculum densities lead to stronger intercolony interactions, such as colony merging and smaller colony sizes, due to nutrient competition. This individual-based model contributes to the elucidation of characteristic experimentally observed colony behavior from mechanistic information about cellular physiology and interactions.


Asunto(s)
Escherichia coli K12/crecimiento & desarrollo , Microbiología de Alimentos , Aerobiosis , Escherichia coli K12/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Análisis de los Alimentos , Modelos Teóricos
10.
Appl Environ Microbiol ; 80(17): 5330-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24951795

RESUMEN

Current literature acknowledges the effect of food structure on bacterial dynamics. Most studies introduce this "structure" factor using a single gelling agent, resulting in a homogeneous environment, whereas in practice most food products are heterogeneous. Therefore, this study focuses on heterogeneous protein-polysaccharide mixtures, based on gelatin and dextran. These mixtures show phase separation, leading to a range of heterogeneous microstructures by adjusting relative concentrations of both gelling agents. Based on confocal microscope observations, the growth of Escherichia coli in gelatin-dextran systems was observed to occur in the dextran phase. To find a relation between microscopic and population behavior, growth experiments were performed in binary and singular gelatin-dextran systems and culture broth at 23.5°C, with or without adding 2.9% (wt/vol) NaCl. The Baranyi and Roberts growth model was fitted to the experimental data and parameter estimates were statistically compared. For salted binary mixtures, a decrease in the population maximum cell density was observed with increasing gelatin concentration. In this series, for one type of microstructure, i.e., a gelatin matrix phase with a disperse dextran phase, the maximum cell density decreased with decreasing percentage of dextran phase. However, this relation no longer held when other types of microstructure were observed. Compared to singular systems, adding a second gelling agent in the presence of NaCl had an effect on population lag phases and maximum cell densities. For unsalted media, the growth parameters of singular and binary mixtures were comparable. Introducing this information into mathematical models leads to more reliable growth predictions and enhanced food safety.


Asunto(s)
Medios de Cultivo/química , Escherichia coli/crecimiento & desarrollo , Gelatina/análisis , Dextranos , Modelos Teóricos , Crecimiento Demográfico , Cloruro de Sodio/metabolismo , Temperatura
11.
Food Microbiol ; 44: 64-70, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25084647

RESUMEN

Steam surface pasteurization is a promising decontamination technology for reducing pathogenic bacteria in different stages of food production. The effect of the artificial inoculation type and initial microbial load, however, has not been thoroughly assessed in the context of inactivation studies. In order to optimize the efficacy of the technology, the aim of this study was to design and validate a model system for steam surface pasteurization, assessing different inoculation methods and realistic microbial levels. More specifically, the response of Listeria innocua, a surrogate organism of Listeria monocytogenes, on a model fish product, and the effect of different inoculation levels following treatments with a steam surface pasteurization system was investigated. The variation in the resulting inoculation level on the samples was too large (77%) for the contact inoculation procedure to be further considered. In contrast, the variation of a drop inoculation procedure was 17%. Inoculation with high levels showed a rapid 1-2 log decrease after 3-5 s, and then no further inactivation beyond 20 s. A low level inoculation study was performed by analysing the treated samples using a novel contact plating approach, which can be performed without sample homogenization and dilution. Using logistic regression, results from this method were used to model the binary responses of Listeria on surfaces with realistic inoculation levels. According to this model, a treatment time of 23 s will result in a 1 log reduction (for P = 0.1).


Asunto(s)
Productos Pesqueros/microbiología , Listeria/crecimiento & desarrollo , Pasteurización/métodos , Animales , Culinaria , Productos Pesqueros/análisis , Peces , Geles/química , Viabilidad Microbiana , Pasteurización/instrumentación , Vapor
12.
Food Sci Nutr ; 12(6): 4299-4310, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873440

RESUMEN

Spread products have an important market share as they have high nutritional value and they are increasingly consumed, especially by children as a source of energy. The purpose of this work was to evaluate the potential use of powdered chickpea, black rice, carob, doum, date seeds, and beetroot to produce novel functional spreadable products as cocoa-free alternatives. Additionally, to avoid the side effects of cocoa-based products and to assess the cocoa replacement effects on the sensory properties, chemical composition, texture analysis, viscosity, antioxidant, peroxide stability, and microbial quality during storage periods were compared to the ones of cocoa spread. Sensory evaluation revealed that most formulated spreads were accepted as chocolate spread alternatives since there was no significant difference in overall acceptability among cocoa, chickpea, black rice, carob, and doum, while date seeds and beetroot spreads were significantly less acceptable. A variation was observed in the proximate chemical analysis of the produced functional spreads, as the alternative spreads had different characteristics to each other in their physicochemical, texture, and rheological properties. Results indicated a wide variation in the total phenolic content (TPC) of the different spread extracts. The highest amount of TPC was obtained for beetroot spread (455.84 mg GAE/100 g) followed by black rice spread (436.08 mg GAE/100 g). The obtained results indicated that the antioxidant activity of different spreads was significantly different (p < .05) while based on their microbiological analysis, they could have a shelf life of up to 9 months. According to the results, chickpea, carob, doum, black rice, date seeds, and beetroot powders could be used for the production of cocoa-free alternatives as they were highly acceptable and they showed antioxidant and antimicrobial activity.

13.
Food Res Int ; 188: 114491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823842

RESUMEN

Minimum inhibitory concentrations (MIC) assays are often questioned for their representativeness. Especially when foodborne pathogens are tested, it is of crucial importance to also consider parameters of the human digestive system. Hence, the current study aimed to assess the inhibitory capacity of two antibiotics, ciprofloxacin and tetracycline, against Salmonella enterica and Listeria monocytogenes, under representative environmental conditions. More specifically, aspects of the harsh environment of the human gastrointestinal tract (GIT) were gradually added to the experimental conditions starting from simple aerobic lab conditions into an in vitro simulation of the GIT. In this way, the effects of parameters including the anoxic environment, physicochemical conditions of the GIT (low gastric pH, digestive enzymes, bile acids) and the gut microbiota were evaluated. The latter was simulated by including a representative consortium of selected gut bacteria species. In this study, the MIC of the two antibiotics against the relevant foodborne pathogens were established, under the previously mentioned environmental conditions. The results of S. enterica highlighted the importance of the anaerobic environment when conducting such studies, since the pathogen thrived under such conditions. Inclusion of physicochemical barriers led to exactly opposite results for S. enterica and L. monocytogenes since the former became more susceptible to ciprofloxacin while the latter showed lower susceptibility towards tetracycline. Finally, the inclusion of gut bacteria had a bactericidal effect against L. monocytogenes even in the absence of antibiotics, while gut bacteria protected S. enterica from the effect of ciprofloxacin.


Asunto(s)
Antibacterianos , Ciprofloxacina , Listeria monocytogenes , Pruebas de Sensibilidad Microbiana , Salmonella enterica , Tetraciclina , Ciprofloxacina/farmacología , Listeria monocytogenes/efectos de los fármacos , Salmonella enterica/efectos de los fármacos , Tetraciclina/farmacología , Antibacterianos/farmacología , Humanos , Tracto Gastrointestinal/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/prevención & control
14.
Int J Food Microbiol ; 413: 110556, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38244386

RESUMEN

Milk powder is a convenient, shelf-stable food ingredient used in a variety of food products. However, pathogenic bacteria can be present and survive during prolonged storage, leading to outbreaks of foodborne diseases and product recalls. Radio frequency (RF) heating is a processing technology suitable for bulk treatment of milk powder, aiming at microbial inactivation. This study investigates the RF inactivation of Salmonella Typhimurium and Listeria monocytogenes in two types of milk powder; skimmed and whole milk powder. Specifically, the aims were to (i) examine the influence of the powder's composition on bacterial inactivation, (ii) evaluate the response of bacteria with different Gram properties (Gram positive and Gram negative) and (iii) verify the use of Enterococcus faecium as a surrogate for the two microorganisms for the specific RF process. In order to examine exclusively the influence of RF, a non-isothermal temperature profile was used, employing solely different RF energy levels to heat the product to the target temperatures. A log-linear model with a Bigelow-type temperature dependency was fitted to the experimental data. S. Typhimurium was less susceptible to RF treatments in comparison to L.monocytogenes, demonstrating a higher inactivation rate (k) and higher percentage of sublethal injury. A higher k was also observed for both microorganisms in the whole milk powder, indicating that the increased fat content and decreased levels of lactose and protein in the milk powder had an adverse impact on the microbial survival for both pathogens. The surrogate microorganism E. faecium successfully validated the microbial response of the two microorganisms to RF treatments. In general, a low heating rate RF-only process was successful in inactivating the two foodborne pathogens in skimmed and whole milk powder by 4 log(CFU/g).


Asunto(s)
Listeria monocytogenes , Salmonella typhimurium , Animales , Recuento de Colonia Microbiana , Polvos , Leche/microbiología , Microbiología de Alimentos
15.
Front Bioeng Biotechnol ; 12: 1355050, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655392

RESUMEN

Plastics are essential in modern life, but their conventional production is problematic due to environmental pollution and waste management issues. Polylactic acid (PLA) is a widely used bioplastic that is bio-based and biodegradable, making it a key player in the bioeconomy. PLA has been proven to be degradable in various settings, including aqueous, soil, and compost environments. However, monitoring and optimizing PLA biodegradation remains challenging. This study proposes methods to improve the quantification of PLA biodegradation by Amycolatopsis spp. Ultrasound treatments (10 s) significantly improved the enumeration of viable Amycolatopsis cells by breaking the pellets into quantifiable individual cells. A separation technique combining ultrasound (120 s) and 40 µm cell strainers effectively isolated PLA particles from biomass to quantify PLA weight loss. This enabled the monitoring of PLA biofragmentation. Finally, CO2 production was measured according to ISO 14852 to quantify mineralization. Integrating these methods provides an improved quantification for PLA biodegradation along its different stages. In a case study, this led to the construction of a carbon balance where 85.1% of initial carbon content was successfully tracked. The developed techniques for monitoring of PLA biodegradation are essential to design future waste management strategies for biodegradable plastics.

16.
Food Microbiol ; 36(2): 355-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24010617

RESUMEN

The occurrence of sublethally injured cells in foods poses major public health concerns and is an essential aspect when assessing the microbial response to food preservation strategies, yet there is limited research dealing with its specific implications for mild heating. All available studies so far have been performed in broths colonized by planktonic cells, although their susceptibility to lethal agents has often been reported to be markedly different to the stress tolerance of cell colonies developed in solid foods. In this work, the effect of planktonic and colony growth, as well as the influence of colony density on sublethal injury induced by mild heating of Escherichia coli, Salmonella Typhimurium and Listeria innocua were assessed in food model systems. Detection of injured survivors relied on their inability to form visible colonies on salt-based selective media, which do not affect the growth of healthy cells. Sublethal injury (SI) increased rapidly with shorter exposure times and afterwards, decreased progressively, suggesting a mechanism of cumulative damage triggering lethal instead of SI. Cell arrangement affected the degree of SI, higher values being generally found for gelified systems, although the effect of colony density depended on the target microorganism. This information is essential for optimizing the design of food safety assurance systems.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Microbiología de Alimentos , Conservación de Alimentos , Listeria/crecimiento & desarrollo , Salmonella typhimurium/crecimiento & desarrollo , Escherichia coli/química , Conservación de Alimentos/métodos , Calor , Listeria/química , Salmonella typhimurium/química
17.
Biotechnol J ; 18(12): e2300164, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37688402

RESUMEN

Pichia pastoris is a popular yeast platform to generate several industrially relevant products which have applications in a wide range of sectors. The complexities in the processes due to the addition of a foreign gene are not widely explored. Since these complexities can be dependent on the strain characteristics, promoter, and type of protein produced, it is vital to investigate the growth and substrate consumption patterns of the host to facilitate customized process optimization. In this study, the growth rates of P. pastoris GS115 wild type (WT) and genetically modified (GM) strains grown on glycerol and methanol in batch cultivation mode were estimated and the model providing the best representation of the true growth kinetics based on substrate consumption was identified. It was observed that the growth of P. pastoris exhibits Haldane kinetics on glycerol rather than the most commonly used Monod kinetics due to the inability of the latter to describe growth inhibition at high concentrations of glycerol. Whereas, the cardinal parameter model, a newly proposed model for this application, was found to be the best fitting to describe the growth of P. pastoris on methanol due to its ability to describe methanol toxicity. Interestingly, the findings from this study concluded that in both substrates, the genetically engineered strain exhibited a higher growth rate compared to the WT strain. Such an observation has not been established yet in other published works, indicating an opportunity to further optimize the carbon source feeding strategies when the host is grown in fed-batch mode.


Asunto(s)
Pichia , Saccharomycetales , Pichia/genética , Pichia/metabolismo , Metanol/metabolismo , Glicerol/metabolismo , Saccharomycetales/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Sci Rep ; 13(1): 10839, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407624

RESUMEN

The effect of Listeria monocytogenes, Salmonella Typhimurium, and Saccharomyces cerevisiae on RF heating was studied in sterilized Milli-Q water and saline solution during treatments at 27.0 ± 0.6 MHz and 3.0 ± 0.02 MHz for 30 min. The presence of microorganisms caused a significant increase in temperature (maximum to 54.9 °C), with no significant decrease in cell numbers being observed for any conditions. For both media and frequencies, heating rates followed the order S. Typhimurium ≤ L. monocytogenes ≤ S. cerevisiae, except for heating at 3.0 ± 0.02 MHz in saline solution, where heating rates for S. cerevisiae and S. Typhimurium were equal. Generally, heating rates for microorganisms were significantly higher at 27.0 ± 0.6 MHz than at 3.0 ± 0.02 MHz, except for the S. cerevisiae case. Observed phenomena were probably caused by differences in the cell lipid and peptidoglycan content, with interaction effects with salt being present. This study was the first to investigate the influence of the presence of microorganisms on heating behavior of simple media. On the long term, more research on this topic could lead to finding specific RF frequencies more suitable for the heating of specific media and products for various applications.


Asunto(s)
Listeria monocytogenes , Saccharomyces cerevisiae , Calefacción , Solución Salina , Ondas de Radio , Temperatura , Recuento de Colonia Microbiana , Microbiología de Alimentos , Calor
19.
Food Res Int ; 164: 112305, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737908

RESUMEN

Even though a plethora of barriers are employed by the human gastrointestinal tract (GIT) to cope with invading pathogens, foodborne diseases are still a common problem. The survival of food pathogens in the GIT is known to depend on food carrier properties. The aim of this study was to investigate the influence of food buffering capacity and food structure on the survival of Salmonella Typhimurium and Listeria monocytogenes during simulated digestion, following contamination of different food model systems that had different combinations of fat and protein content. The results illustrated the strong protective properties of proteins, acting either as a strong buffering agent or as a physical barrier against gastric acidity, for both pathogens. In comparison, fat manifested a lower buffering capacity and weaker protective effects against the two pathogens. Intriguingly, a low fat content was often linked with increased microbial resistance. Nonetheless, both pathogens survived their transit through the simulated GIT in all cases, with S. Typhimurium exhibiting growth during intestinal digestion and L.monocytogenes demonstrating a healthy residual population at the end of the intestinal phase. These results corroborate the need for a deeper understanding regarding the mechanisms with which food affects bacterial survival in the human GIT.


Asunto(s)
Alimentos , Listeria monocytogenes , Humanos , Recuento de Colonia Microbiana , Contaminación de Alimentos/análisis , Digestión
20.
Microorganisms ; 11(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36838370

RESUMEN

The application of several sublethal stresses in hurdle technology can exert microbial stress resistance, which, in turn, might enable foodborne pathogens to overcome other types of lethal stresses, such as the gastrointestinal barriers. The present study evaluated the survival of Salmonella Typhimurium and Listeria monocytogenes during simulated digestion, following exposure to combinations of water activity (aw), pH and storage temperature stresses. The results revealed that both pathogens survived their passage through the simulated gastrointestinal tract (GIT) with their previous habituation to certain hurdle combinations inducing stress tolerance. More specifically, the habituation to a low temperature or to a high pH resulted in the increased stress tolerance of Salmonella, while for Listeria, the cells appeared stress tolerant after exposure to a high temperature or to a low pH. Nonetheless, both pathogens expressed increased sensitivity after habituation to growth-limiting hurdle combinations. The survival of stress-tolerant pathogenic cells in the human GIT poses major public health issues, since it can lead to host infection. Consequently, further research is required to obtain a deeper understanding of the adaptive stress responses of foodborne bacteria after exposure to combinations of sublethal hurdles to improve the existing food safety systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA