Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Biol (Weinh) ; : e2400238, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864562

RESUMEN

Sarcoidosis, a granulomatous disorder of unknown etiology affecting multiple organs. It is often a benign disease but can have significant morbidity and mortality when the heart is involved (often presenting with clinical manifestations such as conduction irregularities and heart failure). This study addresses a critical gap in cardiac sarcoidosis (CS) research by developing a robust animal model. The absence of a reliable animal model for cardiac sarcoidosis is a significant obstacle in advancing understanding and treatment of this condition. The proposed model utilizes carbon nanotube injection and transverse aortic constriction as stressors. Intramyocardial injection of carbon nanotubes induces histiocytes typical of sarcoid granulomas in the heart but shows limited effects on fibrosis or cardiac function. Priming the immune system with transverse aortic constriction prior to intramyocardial injection of carbon nanotubes enhances cardiac fibrosis, diminishes cardiac function, and impairs cardiac conduction. This novel, easily executable model may serve as a valuable tool for disease profiling, biomarker identification, and therapeutic exploration.

2.
Theranostics ; 14(2): 608-621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169629

RESUMEN

Rationale: Extracellular vesicles (EVs) from human explant-derived cells injected directly into the atria wall muscle at the time of open chest surgery reduce atrial fibrosis, atrial inflammation, and atrial fibrillation (AF) in a rat model of sterile pericarditis. Albeit a promising solution to prevent postoperative AF, the mechanism(s) underlying this effect are unknown and it is not clear if this benefit is dependent on EV dose. Methods: To determine the dose-efficacy relationship of EVs from human explant-derived cells in a rat model of sterile pericarditis. Increasing doses of EVs (106, 107, 108 or 109) or vehicle control were injected into the atria of middle-age male Sprague-Dawley rats at the time of talc application. A sham control group was included to demonstrate background inducibility. Three days after surgery, all rats underwent invasive electrophysiological testing prior to sacrifice. Results: Pericarditis increased the likelihood of inducing AF (p<0.05 vs. sham). All doses decreased the probability of inducing AF with maximal effects seen after treatment with the highest dose (109, p<0.05 vs. vehicle). Pericarditis increased atrial fibrosis while EV treatment limited the effect of pericarditis on atrial fibrosis with maximal effects seen after treatment with 108 or 109 EVs. Increasing EV dose was associated with progressive decreases in pro-inflammatory cytokine content, inflammatory cell infiltration, and oxidative stress. EVs decreased NLRP3 (NACHT, LRR, and PYD domains-containing protein-3) inflammasome activation though a direct effect on resident atrial fibroblasts and macrophages. This suppressive effect was exclusive to EVs produced by heart-derived cells as application of EVs from bone marrow or umbilical cords did not alter NLRP3 activity. Conclusions: Intramyocardial injection of incremental doses of EVs at the time of open chest surgery led to progressive reductions in atrial fibrosis and inflammatory markers. These effects combined to render atria resistant to the pro-arrhythmic effects of pericarditis which is mechanistically related to suppression of the NLRP3 inflammasome.


Asunto(s)
Fibrilación Atrial , Exosomas , Pericarditis , Masculino , Ratas , Humanos , Animales , Fibrilación Atrial/prevención & control , Fibrilación Atrial/tratamiento farmacológico , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Fibrosis
3.
Adv Healthc Mater ; 12(32): e2301980, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37811703

RESUMEN

Heart failure, a pervasive global health burden, necessitates innovative therapeutic strategies. Extracellular vesicles (EVs) have emerged as promising contenders for cardiac repair, owing to their profound influence on fibrosis and inflammation. Merging EVs with biomaterials holds the potential for a synergistic leap in therapeutic efficacy. In this review, the impact of combining EVs with biomaterials in preclinical heart failure models is scrutinized. Fifteen studies, predominantly employing mesenchymal stromal cell-derived EVs along with hyaluronic acid or peptides in coronary ligation models, meet these stringent criteria. The amalgamation of EVs and biomaterials consistently enhances cardiac ejection fraction (1.39; 95% CI: 0.68, 2.11; p = 0.0001) and fractional shortening (1.46, 95% CI: 0.70, 2.22; p = 0.0002) compared to EV monotherapy. Secondary outcomes similarly showcased improvement in the combined treatment group. Although the number of studies analyzed is modest, no indications of publication bias surface. In summary, combination therapy with EVs and biomaterials enhances therapeutic benefit in preclinical heart failure models. The consistent improvement observed across diverse EV sources, biomaterials, and animal models underscores the exciting potential of this synergistic approach.


Asunto(s)
Vesículas Extracelulares , Insuficiencia Cardíaca , Células Madre Mesenquimatosas , Animales , Materiales Biocompatibles/uso terapéutico , Insuficiencia Cardíaca/terapia , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA