RESUMEN
PURPOSE: We examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs. METHODS: Electromagnetic (EM) models of 31-channel and 63-channel multichannel arrays built for 10.5 T were developed for 10.5 T and 7 T simulations. A 7 T version of the 63-channel array with an identical coil layout was also built. Array performance was evaluated in the EM model using a phantom mimicking the size and electrical properties of the human head and a digital human head model. Experimental data was obtained at 7 T and 10.5 T with the 63-channel array. Ultimate intrinsic SNR (uiSNR) was calculated for the two field strengths using a voxelized cloud of dipoles enclosing the phantom or the digital human head model as a reference to assess the performance of the two arrays and field depended SNR gains. RESULTS: uiSNR calculations in both the phantom and the digital human head model demonstrated SNR gains at 10.5 T relative to 7 T of 2.6 centrally, Ë2 at the location corresponding to the edge of the brain, Ë1.4 at the periphery. The EM models demonstrated that, centrally, both arrays captured Ë90% of the uiSNR at 7 T, but only Ë65% at 10.5 T, leading only to Ë2-fold gain in array SNR in going from 7 to 10.5 T. This trend was also observed experimentally with the 63-channel array capturing a larger fraction of the uiSNR at 7 T compared to 10.5 T, although the percentage of uiSNR captured were slightly lower at both field strengths compared to EM simulation results. CONCLUSIONS: Major uiSNR gains are predicted for human head imaging in going from 7 T to 10.5 T, ranging from Ë2-fold at locations corresponding to the edge of the brain to 2.6-fold at the center, corresponding to approximately quadratic increase with the magnetic field. Realistic 31- and 63-channel receive arrays, however, approach the central uiSNR at 7 T, but fail to do so at 10.5 T, suggesting that more coils and/or different type of coils will be needed at 10.5 T and higher magnetic fields.
Asunto(s)
Cabeza , Imagen por Resonancia Magnética , Fantasmas de Imagen , Relación Señal-Ruido , Humanos , Cabeza/diagnóstico por imagen , Imagen por Resonancia Magnética/instrumentación , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Simulación por Computador , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
PURPOSE: The peripheral course of the trigeminal nerves is complex and spans multiple bony foramen and tissue compartments throughout the face. Diffusion tensor imaging of these nerves is difficult due to the complex tissue interfaces and relatively low MR signal. The purpose of this work is to develop a method for reliable diffusion tensor imaging-based fiber tracking of the peripheral branches of the trigeminal nerve. METHODS: We prospectively acquired imaging data from six healthy adult participants with a 3.0-Tesla system, including T2-weighted short tau inversion recovery with variable flip angle (T2-STIR-SPACE) and readout segmented echo planar diffusion weighted imaging sequences. Probabilistic tractography of the ophthalmic, infraorbital, lingual, and inferior alveolar nerves was performed manually and assessed by two observers who determined whether the fiber tracts reached defined anatomical landmarks using the T2-STIR-SPACE volume. RESULTS: All nerves in all subjects were tracked beyond the trigeminal ganglion. Tracts in the inferior alveolar and ophthalmic nerve exhibited the strongest signal and most consistently reached the most distal landmark (58% and 67%, respectively). All tracts of the inferior alveolar and ophthalmic nerve extended beyond their respective third benchmarks. Tracts of the infraorbital nerve and lingual nerve were comparably lower-signal and did not consistently reach the furthest benchmarks (9% and 17%, respectively). CONCLUSION: This work demonstrates a method for consistently identifying and tracking the major nerve branches of the trigeminal nerve with diffusion tensor imaging.
Asunto(s)
Imagen de Difusión Tensora , Nervio Trigémino , Adulto , Humanos , Imagen de Difusión Tensora/métodos , Nervio Trigémino/diagnóstico por imagen , Imagen Eco-PlanarRESUMEN
PURPOSE: The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate (NODES) antenna, for building transmit arrays at ultrahigh-field. METHODS: We optimized a dipole antenna at 10.5 Tesla by maximizing the B1+ -SAR efficiency in a phantom for a human spine target. The optimization parameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simulations as well as phantom experiments to compare the transmit/receive performance of the proposed NODES antenna design with existing coil elements from the literature. RESULTS: Single NODES element showed up to 18% and 30% higher B1+ -SAR efficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z-stacked array formation; it is additionally capable of providing a relatively uniform current distribution along its conductors. The nine-channel transmit/receive NODES array achieved 7.5% higher B1+ homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g-averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine. CONCLUSION: In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole elements and may provide improved transmit/receive performance for future ultrahigh field MRI applications.
Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Diseño de Equipo , Humanos , Fantasmas de Imagen , Columna Vertebral/diagnóstico por imagenRESUMEN
PURPOSE: The SNR at the center of a spherical phantom of known electrical properties was measured in quasi-identical experimental conditions as a function of magnetic field strength between 3 T and 11.7 T. METHODS: The SNR was measured at the center of a spherical water saline phantom with a gradient-recalled echo sequence. Measurements were performed at NeuroSpin at 3, 7, and 11.7 T. The phantom was then shipped to Maastricht University and then to the University of Minnesota for additional data points at 7, 9.4, and 10.5 T. Experiments were carried out with the exact same type of birdcage volume coil (except at 3 T, where a similar coil was used) to attempt at isolating the evolution of SNR with field strength alone. Phantom electrical properties were characterized over the corresponding frequency range. RESULTS: Electrical properties were found to barely vary over the frequency range. Removing the influence of the flip-angle excitation inhomogeneity was crucial, as expected. After such correction, measurements revealed a gain of SNR growing as B0 1.94 ± 0.16 compared with B0 2.13 according to ultimate intrinsic SNR theory. CONCLUSIONS: By using quasi-identical experimental setups (RF volume coil, phantom, electrical properties, and protocol), this work reports experimental data between 3 T and 11.7 T, enabling the comparison with SNR theories in which conductivity and permittivity can be assumed to be constant with respect to field strength. According to ultimate SNR theory, these results can be reasonably extrapolated to the performance of receive arrays with greater than about 32 elements for central SNR in the same spherical phantom.
Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Humanos , Campos Magnéticos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Relación Señal-RuidoRESUMEN
INTRODUCTION: Trigeminal neuralgia (TN) is a devastating neuropathic condition. This work tests whether radiomics features derived from MRI of the trigeminal nerve can distinguish between TN-afflicted and pain-free nerves. METHODS: 3D T1- and T2-weighted 1.5-Tesla MRI volumes were retrospectively acquired for patients undergoing stereotactic radiosurgery to treat TN. A convolutional U-net deep learning network was used to segment the trigeminal nerves from the pons to the ganglion. A total of 216 radiomics features consisting of image texture, shape, and intensity were extracted from each nerve. Within a cross-validation scheme, a random forest feature selection method was used, and a shallow neural network was trained using the selected variables to differentiate between TN-affected and non-affected nerves. Average performance over the validation sets was measured to estimate generalizability. RESULTS: A total of 134 patients (i.e., 268 nerves) were included. The top 16 performing features extracted from the masks were selected for the predictive model. The average validation accuracy was 78%. The validation AUC of the model was 0.83, and sensitivity and specificity were 0.82 and 0.76, respectively. CONCLUSION: Overall, this work suggests that radiomics features from MR imaging of the trigeminal nerves correlate with the presence of pain from TN.
Asunto(s)
Radiocirugia , Neuralgia del Trigémino , Humanos , Imagen por Resonancia Magnética/métodos , Radiocirugia/métodos , Estudios Retrospectivos , Nervio Trigémino/diagnóstico por imagen , Neuralgia del Trigémino/diagnóstico por imagen , Neuralgia del Trigémino/cirugíaRESUMEN
PURPOSE: Receive array layout, noise mitigation, and B0 field strength are crucial contributors to SNR and parallel-imaging performance. Here, we investigate SNR and parallel-imaging gains at 10.5 T compared with 7 T using 32-channel receive arrays at both fields. METHODS: A self-decoupled 32-channel receive array for human brain imaging at 10.5 T (10.5T-32Rx), consisting of 31 loops and one cloverleaf element, was co-designed and built in tandem with a 16-channel dual-row loop transmitter. Novel receive array design and self-decoupling techniques were implemented. Parallel imaging performance, in terms of SNR and noise amplification (g-factor), of the 10.5T-32Rx was compared with the performance of an industry-standard 32-channel receiver at 7 T (7T-32Rx) through experimental phantom measurements. RESULTS: Compared with the 7T-32Rx, the 10.5T-32Rx provided 1.46 times the central SNR and 2.08 times the peripheral SNR. Minimum inverse g-factor value of the 10.5T-32Rx (min[1/g] = 0.56) was 51% higher than that of the 7T-32Rx (min[1/g] = 0.37) with R = 4 × 4 2D acceleration, resulting in significantly enhanced parallel-imaging performance at 10.5 T compared with 7 T. The g-factor values of 10.5 T-32 Rx were on par with those of a 64-channel receiver at 7 T (eg, 1.8 vs 1.9, respectively, with R = 4 × 4 axial acceleration). CONCLUSION: Experimental measurements demonstrated effective self-decoupling of the receive array as well as substantial gains in SNR and parallel-imaging performance at 10.5 T compared with 7 T.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Aceleración , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Humanos , Fantasmas de Imagen , Relación Señal-RuidoRESUMEN
Over the recent years, significant advances in Spin-Echo (SE) Echo-Planar (EP) Diffusion MRI (dMRI) have enabled improved fiber tracking conspicuity in the human brain. At the same time, pushing the spatial resolution and using higher b-values inherently expose the acquired images to further eddy-current-induced distortion and blurring. Recently developed data-driven correction techniques, capable of significantly mitigating these defects, are included in the reconstruction pipelines developed for the Human Connectome Project (HCP) driven by the NIH BRAIN initiative. In this case, however, corrections are derived from the original diffusion-weighted (DW) magnitude images affected by distortion and blurring. Considering the complexity of k-space deviations in the presence of time varying high spatial order eddy currents, distortion and blurring may not be fully reversed when relying on magnitude DW images only. An alternative approach, consisting of iteratively reconstructing DW images based on the actual magnetic field spatiotemporal evolution measured with a magnetic field monitoring camera, has been successfully implemented at 3T in single band dMRI (Wilm et al., 2017, 2015). In this study, we aim to demonstrate the efficacy of this eddy current correction method in the challenging context of HCP-style multiband (MB â= â2) dMRI protocol. The magnetic field evolution was measured during the EP-dMRI readout echo train with a field monitoring camera equipped with 16 19F NMR probes. The time variation of 0th, 1st and 2nd order spherical field harmonics were used to reconstruct DW images. Individual DW images reconstructed with and without field correction were compared. The impact of eddy current correction was evaluated by comparing the corresponding direction-averaged DW images and fractional anisotropy (FA) maps. 19F field monitoring data confirmed the existence of significant field deviations induced by the diffusion-encoding gradients, with variations depending on diffusion gradient amplitude and direction. In DW images reconstructed with the field correction, residual aliasing artifacts were reduced or eliminated, and when high b-values were applied, better gray/white matter delineation and sharper gyri contours were observed, indicating reduced signal blurring. The improvement in image quality further contributed to sharper contours and better gray/white matter delineation in mean DW images and FA maps. In conclusion, we demonstrate that up-to-2nd-order-eddy-current-induced field perturbation in multiband, in-plane accelerated HCP-style dMRI acquisition at 7T can be corrected by integrating the measured field evolution in image reconstruction.
Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/normas , Imagen Eco-Planar/normas , Procesamiento de Imagen Asistido por Computador/normas , Campos Magnéticos , Neuroimagen/normas , Adulto , Artefactos , Conectoma , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Proyectos Piloto , Prueba de Estudio ConceptualRESUMEN
PURPOSE: To investigate the feasibility of imaging the human torso and to evaluate the performance of several radiofrequency (RF) management strategies at 10.5T. METHODS: Healthy volunteers were imaged on a 10.5T whole-body scanner in multiple target anatomies, including the prostate, hip, kidney, liver, and heart. Phase-only shimming and spoke pulses were used to demonstrate their performance in managing the B1+ inhomogeneity present at 447 MHz. Imaging protocols included both qualitative and quantitative acquisitions to show the feasibility of imaging with different contrasts. RESULTS: High-quality images were acquired and demonstrated excellent overall contrast and signal-to-noise ratio. The experimental results matched well with predictions and suggested good translational capabilities of the RF management strategies previously developed at 7T. Phase-only shimming provided increased efficiency, but showed pronounced limitations in homogeneity, demonstrating the need for the increased degrees of freedom made possible through single- and multispoke RF pulse design. CONCLUSION: The first in-vivo human imaging was successfully performed at 10.5T using previously developed RF management strategies. Further improvement in RF coils, transmit chain, and full integration of parallel transmit functionality are needed to fully realize the benefits of 10.5T.
Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Corazón , Humanos , Masculino , Ondas de Radio , Relación Señal-RuidoRESUMEN
PURPOSE: The purpose of this study is to safely acquire the first human head images at 10.5T. METHODS: To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole-body 10.5T scanner in the Center for Magnetic Resonance Research. RESULTS: Quantitative agreement between the simulated and experimental results was obtained including S-parameters, B1+ maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2 - and T2∗ -weighted images of human subjects at 10.5T. CONCLUSIONS: In this study, we acquired the first in vivo human head images at 10.5T using an 8-channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8-channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.
Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Simulación por Computador , Humanos , Fantasmas de ImagenRESUMEN
PURPOSE: In this study, we investigate a strategy to reduce the local specific absorption rate (SAR) while keeping B1+ constant inside the region of interest (ROI) at the ultra-high field (B0 ≥ 7T) MRI. METHODS: Locally raising the resonance structure under the discontinuity (i.e., creating a bump) increases the distance between the accumulated charges and the tissue. As a result, it reduces the electric field and local SAR generated by these charges inside the tissue. The B1+ at a point that is sufficiently far from the coil, however, is not affected by this modification. In this study, three different resonant elements (i.e., loop coil, snake antenna, and fractionated dipole [FD]) are investigated. For experimental validation, a bumped FD is further investigated at 10.5T. After the validation, the transmit performances of eight-channel arrays of each element are compared through electromagnetic (EM) simulations. RESULTS: Introducing a bump reduced the peak 10g-averaged SAR by 21, 26, 23% for the loop and snake antenna at 7T, and FD at 10.5T, respectively. In addition, eight-channel bumped FD array at 10.5T had a 27% lower peak 10g-averaged SAR in a realistic human body simulation (i.e., prostate imaging) compared to an eight-channel FD array. CONCLUSION: In this study, we investigated a simple design strategy based on adding bumps to a resonant element to reduce the local SAR while maintaining B1+ inside an ROI. As an example, we modified an FD and performed EM simulations and phantom experiments with a 10.5T scanner. Results show that the peak 10g-averaged SAR can be reduced more than 25%.
Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Diseño de Equipo , Humanos , Masculino , Fantasmas de Imagen , PróstataRESUMEN
PURPOSE: To improve imaging performance for body MRI with a local transmit array at 10.5T, the geometry of a dipole antenna was optimized to achieve lower peak specific absorption rate (SAR) levels and a more uniform transmit profile. METHODS: Electromagnetic simulations on a phantom were used to evaluate the SAR and B 1 + -performance of different dipole antenna geometries. The best performing antenna (the snake antenna) was simulated on human models in a 12-channel array configuration for safety assessment and for comparison to a previous antenna design. This 12-channel array was constructed after which electromagnetic simulations were validated by B 1 + -maps and temperature measurements. After obtaining approval by the Food and Drug Administration to scan with the snake antenna array, in vivo imaging was performed on 2 volunteers. RESULTS: Simulation results on a phantom indicate a lower SAR and a higher transmit efficiency for the snake antenna compared to the fractionated dipole array. Similar results are found on a human body model: when comparing the trade-off between uniformity and peak SAR, the snake antenna performs better for all imaging targets. Simulations and measurements are in good agreement. Preliminary imaging result were acquired in 2 volunteers with the 12-channel snake antenna array. CONCLUSION: By optimizing the geometry of a dipole antenna, peak SAR levels were lowered while achieving a more uniform transmit field as demonstrated in simulations on a phantom and a human body model. The array was constructed, validated, and successfully used to image 2 individuals at 10.5T.
Asunto(s)
Imagen por Resonancia Magnética , Próstata , Animales , Diseño de Equipo , Humanos , Masculino , Fantasmas de Imagen , SerpientesRESUMEN
PURPOSE: Simultaneous multislab (SMSb) 4D flow MRI was developed and implemented at 7T for accelerated acquisition of the 3D blood velocity vector field in both carotid bifurcations. METHODS: SMSb was applied to 4D flow to acquire blood velocities in both carotid bifurcations in sagittal orientation using a local transmit/receive coil at 7T. B1+ transmit efficiency was optimized by B1+ shimming. SMSb 4D flow was obtained in 8 healthy subjects in single-band (SB) and multiband (MB) fashion. Additionally, MB data were retrospectively undersampled to simulate GRAPPA R = 2 (MB2_GRAPPA2), and both SB datasets were added to form an artificial MB dataset (SumSB). The band separation performance was quantified by signal leakage. Peak velocity and total flow values were calculated and compared to SB via intraclass correlation analysis (ICC). RESULTS: Clean slab separation was achieved yielding a mean signal leakage of 13% above the mean SB noise level. Mean total flow for MB2, SumSB, and MB_GRAPPA2 deviated less than 9% from the SB values. Peak velocities averaged over all vessels and subjects were 0.48 ± 0.11 m/s for SB, 0.47 ± 0.12 m/s for SumSB, 0.50 ± 0.13 m/s for MB2, and 0.53 ± 0.13 m/s for MB2_GRAPPA2. ICC revealed excellent absolute agreement and consistency of total flow for all methods compared to SB2. Peak velocity showed good to excellent agreement and consistency for SumSB and MB2 and MB2_GRAPPA2 method showed poor to excellent agreement and good to excellent consistency. CONCLUSION: Simultaneous multislab 4D Flow MRI allows accurate quantification of total flow and peak velocity while reducing scan times.
Asunto(s)
Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Velocidad del Flujo Sanguíneo , Arterias Carótidas/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Reproducibilidad de los Resultados , Estudios RetrospectivosRESUMEN
We investigate the utility of radiofrequency (RF) parallel transmission (pTx) for whole-brain resting-state functional MRI (rfMRI) acquisition at 7 Tesla (7T). To this end, Human Connectome Project (HCP)-style data acquisitions were chosen as a showcase example. Five healthy subjects were scanned in pTx and single-channel transmit (1Tx) modes. The pTx data were acquired using a prototype 16-channel transmit system and a commercially available Nova 8-channel transmit 32-channel receive RF head coil. Additionally, pTx single-spoke multiband (MB) pulses were designed to image sagittal slices. HCP-style 7T rfMRI data (1.6-mm isotropic resolution, 5-fold slice and 2-fold in-plane acceleration, 3600â¯image volumes and â¼ 1-h scan) were acquired with pTx and the results were compared to those acquired with the original 7T HCP rfMRI protocol. The use of pTx significantly improved flip-angle uniformity across the brain, with coefficient of variation (i.e., std/mean) of whole-brain flip-angle distribution reduced on average by â¼39%. This in turn yielded â¼17% increase in group temporal SNR (tSNR) as averaged across the entire brain and â¼10% increase in group functional contrast-to-noise ratio (fCNR) as averaged across the grayordinate space (including cortical surfaces and subcortical voxels). Furthermore, when placing a seed in either the posterior parietal lobe or putamen to estimate seed-based dense connectome, the increase in fCNR was observed to translate into stronger correlation of the seed with the rest of the grayordinate space. We have demonstrated the utility of pTx for slice-accelerated high-resolution whole-brain rfMRI at 7T; as compared to current state-of-the-art, the use of pTx improves flip-angle uniformity, increases tSNR, enhances fCNR and strengthens functional connectivity estimation.
Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ondas de Radio , Descanso/fisiología , Adulto JovenRESUMEN
PURPOSES: To develop and evaluate a boundary informed electrical properties tomography (BIEPT) technique for high-resolution imaging of tumor electrical properties (EPs) heterogeneity on a rodent tumor xenograft model. METHODS: Tumor EP distributions were inferred from a reference area external to the tumor, as well as internal EP spatial variations derived from a plurality of relative transmit B1 measurements at 7T. Edge sparsity constraint was enforced to enhance numerical stability. Phantom experiments were performed to determine the imaging accuracy and sensitivity for structures of various EP values, as well as geometrical sizes down to 1.5 mm. Numerical simulation of a realistic rodent model was used to quantify the algorithm performance in the presence of noise. Eleven athymic rats with human breast cancer xenograft were imaged in vivo, and representative pathological samples were acquired for comparison. RESULTS: Reconstructed EPs of the phantoms correspond well to the ground truth acquired from dielectric probe measurements, with the smallest structure reliably detectable being 3 mm. EPs heterogeneity inside a tumor is successfully retrieved in both simulated and experimental cases. In vivo tumor imaging results demonstrate similar local features and spatial patterns to anatomical MRI and pathological slides. The imaged conductivity of necrotic tissue is higher than that of viable tissues, which agrees with our expectation. CONCLUSION: BIEPT enables robust detection of tumor EPs heterogeneity with high accuracy and sensitivity to small structures. The retrieved quantitative EPs reflect tumor pathological features (e.g., necrosis). These results provide strong rationale to further expand BIEPT studies toward pathological conditions where EPs may yield valuable, non-invasive biomarkers.
Asunto(s)
Encéfalo/diagnóstico por imagen , Conductividad Eléctrica , Tomografía , Algoritmos , Animales , Biomarcadores de Tumor , Simulación por Computador , Femenino , Humanos , Imagen por Resonancia Magnética , Modelos Teóricos , Método de Montecarlo , Necrosis , Trasplante de Neoplasias , Distribución Normal , Fantasmas de Imagen , Ondas de Radio , Ratas , Programas Informáticos , Tomografía Computarizada por Rayos XRESUMEN
PURPOSE: Despite the clear synergy between high channel counts in a receive array and magnetic fields ≥ 7 Tesla, to date such systems have been restricted to a maximum of 32 channels. Here, we examine SNR gains at 7 Tesla in unaccelerated and accelerated images with a 64-receive channel (64Rx) RF coil. METHODS: A 64Rx coil was built using circular loops tiled in 2 separable sections of a close-fitting form; custom designed preamplifier boards were integrated into each coil element. A 16-channel transmitter arranged in 2 rows along the z-axis was employed. The performance of the 64Rx array was experimentally compared to that of an industry-standard 32-channel receive (32Rx) array for SNR in unaccelerated images and for noise amplification under parallel imaging. RESULTS: SNR gains were observed in the periphery but not in the center of the brain in unaccelerated imaging compared to the 32Rx coil. With either 1D or 2D undersampling of k-space, or with slice acceleration together with 1D undersampling of k-space, significant reductions in g-factor noise were observed throughout the brain, yielding effective gains in SNR in the entire brain compared to the 32Rx coil. Task-based FMRI data with 12-fold 2D (slice and phase-encode) acceleration yielded excellent quality functional maps with the 64Rx coil but was significantly beyond the capabilities of the 32Rx coil. CONCLUSION: The results confirm the expectations from modeling studies and demonstrate that whole-brain studies with up to 16-fold, 2D acceleration would be feasible with the 64Rx coil.
Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Diseño de Equipo , Femenino , Humanos , Masculino , Fantasmas de Imagen , Relación Señal-Ruido , Adulto JovenRESUMEN
This paper presents an investigation of methods for improving homogeneity inside various dielectric phantoms situated in a 10.5 T human-sized MRI. The transmit B1 ( B 1 + ) field is excited with a quadrature fed circular patch-probe and a 12 element capacitively-loaded microstrip array. Both simulations and measurements show improved homogeneity in a cylindrical water phantom, an inhomogeneous phantom (pineapple), and a NIST standard phantom. The simulations are performed using a full-wave finite-difference time-domain solver (Sim4Life) in order to find the B 1 + field distribution and compared to the gradient recalled echo image and efficiency result. For additional field uniformity, the wall electromagnetic boundary conditions are modified with a passive quadrifilar helix. Finally, these methods are applied in simulation to head imaging of an anatomically correct human body model (Duke, IT'IS Virtual Population) showing improved homogeneity and specific absorption rate for various excitations.
RESUMEN
PURPOSE: To evaluate the feasibility of quantitative single breath-hold renal arterial spin labeling (ASL) imaging at 7T. METHODS: A single-shot fast spin echo FAIR (flow-sensitive alternating inversion recovery) method was used to perform two studies. First, a multi-delay perfusion study was performed to estimate the spin labeling temporal bolus width achievable with a local transceiver array coil at 7T. Second, with a conservatively defined bolus width, a quantitative perfusion study was performed using the single subtraction approach. To address issues of B1+ inhomogeneity/efficiency and excessive short-term specific absorption rates, various strategies were used, such as dynamic radiofrequency shimming and optimization. RESULTS: A conservative temporal bolus width of 600 ms determined from the multi-delay study was applied for single-subtraction imaging to measure the renal blood flow in the cortex and medulla: 303 ± 31.8 and 91.3 ± 15.2 (mL/100 g/min), respectively. The estimated spatial and temporal signal-to-noise ratios of renal perfusion measurements were 3.8 ± 0.7 and 2.4 ± 0.6 for the cortex, and 2.2 ± 0.6 and 1.4 ± 0.2 for the medulla. CONCLUSION: With proper management of field strength specific challenges, quantitative renal ASL imaging can be achieved at 7T within a single breath-hold. Magn Reson Med 79:815-825, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Riñón/irrigación sanguínea , Riñón/diagnóstico por imagen , Angiografía por Resonancia Magnética/métodos , Adulto , Anciano , Contencion de la Respiración , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
PURPOSE: Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). METHODS: Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. RESULTS: pTx significantly improved flip-angle detected signal uniformity across the brain, yielding â¼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with â¼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. CONCLUSION: pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data.
Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Adolescente , Adulto , Anciano , Algoritmos , Conectoma , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
PURPOSE: To develop and evaluate a technique for imaging electrical properties ((EPs), conductivity and permittivity) of an animal tumor model in vivo using MRI. METHODS: Electrical properties were reconstructed from the calculated EP gradient, which was derived using two sets of measured transmit B1 magnitude and relative phase maps with the sample and radiofrequency (RF) coil oriented in the positive and negative z-directions, respectively. An eight-channel transceiver microstrip array RF coil fitting the size of the animal was developed for generating and mapping B1 fields to reconstruct EPs. The technique was evaluated at 7 tesla using a physical phantom and in vivo on two Copenhagen rats with subcutaneously implanted AT-1 rat prostate cancer on a hind limb. RESULTS: The reconstructed EPs in the phantom experiment was in good agreement with the target EP map determined by a dielectric probe. Reconstructed conductivity map of the animals revealed the boundary between tumor and healthy tissue consistent with the boundary indicated by T1 -weighted MRI. CONCLUSION: A technique for imaging EP of an animal tumor model using MRI has been developed with high sensitivity, accuracy, and resolution, as demonstrated in the phantom experiment. Further animal experiments are needed to demonstrate its translational value for tumor diagnosis. Magn Reson Med 78:2157-2169, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Imagen por Resonancia Magnética , Neoplasias de la Próstata/diagnóstico por imagen , Tomografía , Algoritmos , Animales , Conductividad Eléctrica , Procesamiento de Imagen Asistido por Computador , Masculino , Trasplante de Neoplasias , Fantasmas de Imagen , Ondas de Radio , RatasRESUMEN
PURPOSE: Cardiac MRI at 7T suffers from contrast heterogeneity that can be mitigated with parallel transmission (pTX) and, when performed during breath-hold, from a limited number of slices that can be multiplied with multiband (MB) radiofrequency pulses by simultaneous excitation of multiple slices (SMS). The goal of this study was to apply both approaches simultaneously. METHODS: Using a 16-channel transmit/receive body coil, pTX SMS was applied with/without CAIPIRINHA with a modified gradient echo cine sequence. Different calibration schemes were investigated for the slice-GRAPPA reconstruction kernels as a function of the cardiac cycle. RESULTS: Excellent slice separation for MB = 2 was achieved with CAIPIRINHA, with slice leakage values below 3% for 99% of all voxels. A critical finding of this study was the variation of the MB leakage factor in the heart by as much as 30% throughout the cardiac cycle, which was reduced greatly when reconstruction kernels were calibrated on multiple cardiac phases. Acceptable results were still obtained when applying further acceleration with MB = 3 in combination with in-plane GRAPPA. In one case, two-spoke pulses were compared with one-spoke pulses, resulting as expected in improved homogeneity. CONCLUSION: pTX SMS imaging at 7T can address contrast heterogeneity while allowing larger slice coverage in cardiac MRI performed under breath-hold. Magn Reson Med 77:1010-1020, 2017. © 2016 International Society for Magnetic Resonance in Medicine.