RESUMEN
Human microbiomes, particularly in the gut, could have a major impact on the efficacy and toxicity of drugs. However, gut microbial metabolism is often neglected in the drug discovery and development process. Medicen, a Paris-based human health innovation cluster, has gathered more than 30 international leading experts from pharma, academia, biotech, clinical research organizations, and regulatory science to develop proposals to facilitate the integration of microbiome science into drug discovery and development. Seven subteams were formed to cover the complementary expertise areas of 1) pharma experience and case studies, 2) in silico microbiome-drug interaction, 3) in vitro microbial stability screening, 4) gut fermentation models, 5) animal models, 6) microbiome integration in clinical and regulatory aspects, and 7) microbiome ecosystems and models. Each expert team produced a state-of-the-art report of their respective field highlighting existing microbiome-related tools at every stage of drug discovery and development. The most critical limitations are the growing, but still limited, drug-microbiome interaction data to produce predictive models and the lack of agreed-upon standards despite recent progress. In this paper we will report on and share proposals covering 1) how microbiome tools can support moving a compound from drug discovery to clinical proof-of-concept studies and alert early on potential undesired properties stemming from microbiome-induced drug metabolism and 2) how microbiome data can be generated and integrated in pharmacokinetic models that are predictive of the human situation. Examples of drugs metabolized by the microbiome will be discussed in detail to support recommendations from the working group. SIGNIFICANCE STATEMENT: Gut microbial metabolism is often neglected in the drug discovery and development process despite growing evidence of drugs' efficacy and safety impacted by their interaction with the microbiome. This paper will detail existing microbiome-related tools covering every stage of drug discovery and development, current progress, and limitations, as well as recommendations to integrate them into the drug discovery and development process.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Humanos , Descubrimiento de Drogas , Interacciones FarmacológicasRESUMEN
BACKGROUND: IgE-mediated cow's milk allergy (IgE-CMA) is one of the first allergies to arise in early childhood and may result from exposure to various milk allergens, of which ß-lactoglobulin (BLG) and casein are the most important. Understanding the underlying mechanisms behind IgE-CMA is imperative for the discovery of novel biomarkers and the design of innovative treatment and prevention strategies. METHODS: We report a longitudinal in vivo murine model, in which two mice strains (BALB/c and C57Bl/6) were sensitized to BLG using either cholera toxin or an oil emulsion (n = 6 per group). After sensitization, mice were challenged orally, their clinical signs monitored, antibody (IgE and IgG1) and cytokine levels (IL-4 and IFN-γ) measured, and fecal samples subjected to metabolomics. The results of the murine models were further extrapolated to fecal microbiome-metabolome data from our population of IgE-CMA (n = 22) and healthy (n = 23) children (Trial: NCT04249973), on which polar metabolomics, lipidomics and 16S rRNA metasequencing were performed. In vitro gastrointestinal digestions and multi-omics corroborated the microbial origin of proposed metabolic changes. RESULTS: During mice sensitization, we observed multiple microbially derived metabolic alterations, most importantly bile acid, energy and tryptophan metabolites, that preceded allergic inflammation. We confirmed microbial dysbiosis, and its associated effect on metabolic alterations in our patient cohort, through in vitro digestions and multi-omics, which was accompanied by metabolic signatures of low-grade inflammation. CONCLUSION: Our results indicate that gut dysbiosis precedes allergic inflammation and nurtures a chronic low-grade inflammation in children on elimination diets, opening important new opportunities for future prevention and treatment strategies.
Asunto(s)
Microbiota , Hipersensibilidad a la Leche , Humanos , Niño , Preescolar , Bovinos , Femenino , Ratones , Animales , Disbiosis , ARN Ribosómico 16S , Inflamación , Alérgenos , Lactoglobulinas , Inmunoglobulina E , MetabolomaRESUMEN
Differences in dog breed sizes are an important determinant of variations in digestive physiology, mainly related to the large intestine. In vitro gut models are increasingly used as alternatives to animal experiments for technical, cost, societal, and regulatory reasons. Up to now, only one in vitro model of the canine colon incorporates the dynamics of different canine gut regions, yet no adaptations exist to reproduce size-related digestive parameters. To address this limitation, we developed a new model of the canine colon, the CANIne Mucosal ARtificial COLon (CANIM-ARCOL), simulating main physiochemical (pH, transit time, anaerobiosis), nutritional (ileal effluent composition), and microbial (lumen and mucus-associated microbiota) parameters of this ecosystem and adapted to three dog sizes (i.e., small under 10 kg, medium 10-30 kg, and large over 30 kg). To validate the new model regarding microbiota composition and activities, in vitro fermentations were performed in bioreactors inoculated with stools from 13 dogs (4 small, 5 medium, and 4 large). After a stabilization period, microbiota profiles clearly clustered depending on dog size. Bacteroidota and Firmicutes abundances were positively correlated with dog size both in vitro and in vivo, while opposite trends were observed for Actinobacteria and Proteobacteria. As observed in vivo, microbial activity also increased with dog size in vitro, as evidenced from gas production, short-chain fatty acids, ammonia, and bile acid dehydroxylation. In line with the 3R regulation, CANIM-ARCOL could be a relevant platform to assess bilateral interactions between food and pharma compounds and gut microbiota, capturing inter-individual or breed variabilities. KEY POINTS: ⢠CANIM-ARCOL integrates main canine physicochemical and microbial colonic parameters ⢠Gut microbiota associated to different dog sizes is accurately maintained in vitro ⢠The model can help to move toward personalized approach considering dog body weight.
Asunto(s)
Actinobacteria , Ecosistema , Perros , Animales , Colon , Amoníaco , AnaerobiosisRESUMEN
Tea polyphenols have been extensively studied for their preventive properties against cardiometabolic diseases. Nevertheless, the evidence of these effects from human intervention studies is not always consistent, mainly because of a large interindividual variability. The bioavailability of tea polyphenols is low, and metabolism of tea polyphenols highly depends on individual gut microbiota. The accompanying reciprocal relationship between tea polyphenols and gut microbiota may result in alterations in the cardiometabolic effects, however, the underlying mechanism of which is little explored. This review summarizes tea polyphenols-microbiota interaction and its contribution to interindividual variability in cardiometabolic effects. Currently, only a few bacteria that can biodegrade tea polyphenols have been identified and generated metabolites and their bioactivities in metabolic pathways are not fully elucidated. A deeper understanding of the role of complex interaction necessitates fully individualized data, the ntegration of multiple-omics platforms and development of polyphenol-centered databases. Knowledge of this microbial contribution will enable the functional stratification of individuals in the gut microbiota profile (metabotypes) to clarify interindividual variability in the health effects of tea polyphenols. This could be used to predict individual responses to tea polyphenols consumption, hence bringing us closer to personalized nutrition with optimal dose and additional supplementation of specific microorganisms.
Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Microbiota , Humanos , Polifenoles/farmacología , Polifenoles/metabolismo , Té/metabolismo , Enfermedades Cardiovasculares/prevención & controlRESUMEN
The colonic epithelial barrier is vital to preserve gut and host health by maintaining the immune homeostasis between host and microbes. The mechanisms underlying beneficial or harmful host-microbe interactions are poorly understood and impossible to study in vivo given the limited accessibility and ethical constraints. Moreover, existing in vitro models lack the required cellular complexity for the routine, yet profound, analysis of the intricate interplay between different types of host and microbial cells. We developed and characterized a broadly applicable, easy-to-handle in vitro triple coculture model that combines chemically-induced macrophage-like, goblet and epithelial cells covered by a mucus layer, which can be coincubated with complex human-derived gut microbiota samples for 16 h. Comparison with a standard epithelial monolayer model revealed that triple cocultures produce thicker mucus layers, morphologically organize in a network and upon exposure to human-derived gut microbiota samples, respond via pro-inflammatory cytokine production. Both model systems, however, were not suffering from cytotoxic stress or different microbial loads, indicating that the obtained endpoints were caused by the imposed conditions. Addition of the probiotic Lactobacillus rhamnosus GG to assess its immunomodulating capacity in the triple coculture slightly suppressed pro-inflammatory cytokine responses, based on transcriptomic microarray analyses. TNF conditioning of the models prior to microbial exposure did not cause shifts in cytokines, suggesting a strong epithelial barrier in which TNF did not reach the basolateral side. To conclude, the triple coculture model is tolerable towards manipulations and allows to address mechanistic host-microbe research questions in a stable in vitro environment.
Asunto(s)
Técnicas de Cocultivo/métodos , Colon/inmunología , Células Epiteliales/inmunología , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Colon/citología , Colon/metabolismo , Colon/microbiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lacticaseibacillus rhamnosus/fisiología , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/microbiología , TranscriptomaRESUMEN
AIMS: This research aimed to develop and validate a cultivation and monitoring protocol that is suitable for a surrogate microbial community that accounts for the gut microbiota of the ileum of the small intestine. METHODS AND RESULTS: Five bacterial species have been selected as representatives of the ileal gut microbiota and a general anaerobic medium (MS-BHI, as minimally supplemented brain heart infusion) has been constructed and validated against BCCM/LGM recommended and commercial media. Moreover, appropriate selective/differential media have been investigated for monitoring each ileal gut microbiota surrogate. Results showed that MS-BHI was highly efficient in displaying individual and collective behaviour of the ileal gut microbiota species, when compared with other types of media. Likewise, the selective/differential media managed to identify and describe the behaviour of their targeted species. CONCLUSIONS: MS-BHI renders a highly efficient, inexpensive and easy-to-prepare cultivation and enumeration alternative for the surrogate ileal microbiota species. Additionally, the selective/differential media can identify and quantify the bacteria of the surrogate ileal microbial community. SIGNIFICANCE AND IMPACT OF STUDY: The selected gut microbiota species can represent an in vitro ileal community, forming the basis for future studies on small intestinal microbiota. MS-BHI and the proposed monitoring protocol can be used as a standard for gut microbiota studies that utilize conventional microbiological techniques.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Bacterias/genética , Íleon/microbiología , Intestino DelgadoRESUMEN
Early life is a critical period where gut ecosystem and functions are being established with significant impact on health. For regulatory, technical, and cost reasons, in vitro gut models can be used as a relevant alternative to in vivo assays. An exhaustive literature review was conducted to adapt the Mucosal Artificial Colon (M-ARCOL) to specific physicochemical (pH, transit time, and nutritional composition of ileal effluents) and microbial parameters from toddlers in the age range of 6 months-3 years, resulting in the Tm-ARCOL. In vitro fermentations were performed to validate this newly developed colonic model compared to in vivo toddler data. Results were also compared to those obtained with the classical adult configuration. Fecal samples from 5 toddlers and 4 adults were used to inoculate bioreactors, and continuous fermentations were performed for 8 days. Gut microbiota structure (lumen and mucus-associated microbiota) and functions (gas and short-chain fatty acids) were monitored. Clearly distinct microbial signatures were obtained between the two in vitro conditions, with lower α-diversity indices and higher abundances of infant-related microbial populations (e.g., Bifidobacteriaceae, Enterobacteriaceae) in toddler versus adult conditions. In accordance with in vivo data, methane was found only in adult bioreactors, while higher percentage of acetate but lower proportions of propionate and butyrate was measured in toddlers compared to adults. This new in vitro model will provide a powerful platform for gut microbiome mechanistic studies in a pediatric context, both in nutritional- (e.g., nutrients, probiotics, prebiotics) and health-related (e.g., drugs, enteric pathogens) studies. KEY POINTS: ⢠Development of a novel in vitro colonic model recapitulating the toddler environment. ⢠Specific toddler versus adult digestive conditions are preserved in vitro. ⢠The new model provides a powerful platform for microbiome mechanistic studies.
Asunto(s)
Microbiota , Propionatos , Adulto , Lactante , Humanos , Preescolar , Niño , Colon , Ácidos Grasos Volátiles , Heces , Butiratos , MetanoRESUMEN
Arsenolipids are organic arsenic species with variable toxicity. Accurate assessment of the risks derived from arsenic-contaminated seafood intake requires studying the interplay between arsenolipids and the human gut microbiota. This research used the in vitro mucosal simulator of the human intestinal microbial ecosystem (M-SHIME) to assess the effect of defined chemical standards of arsenolipids (AsFA 362 and AsHC 332) on a simulated healthy human gut microbiota (n = 4). Microbial-derived metabolites were quantified by gas chromatography and microbiota structure was characterized by 16S rRNA gene sequencing. A specific reduction in butyrate production (control=5.28 ± 0.3 mM; AsFAs=4.56 ± 0.4 mM; AsHC 332=4.4⯱â¯0.6â¯mM, n = 4 donors), concomitant with a reduction in the abundance of Lachnospiraceae UCG-004 group and the Faecalibacterium genus was observed, albeit in a donor-dependent manner. Furthermore, an increase in Escherichia/Shigella, Proteobacteria and Fusobacterium abundance was observed after arsenolipid treatments, depending on individual microbiota background. These alterations in microbial functionality and microbial community structure suggest a detrimental effect of arsenolipids intake towards the commensal gut microbiome, and consequently, on human health.
Asunto(s)
Arsénico , Microbioma Gastrointestinal , Humanos , Butiratos/farmacología , Arsénico/toxicidad , ARN Ribosómico 16S/genética , EcosistemaRESUMEN
Understanding the interplay between the gut microbiome and arsenolipids can help us manage the potential health risk of consuming seafood, but little is known about the bioconversion fate of arsenolipids in the gastrointestinal tract. We use an in vitro mucosal simulator of the human intestinal microbial ecosystem (M-SHIME) to mimic the digestive tract of four healthy donors during exposure to two arsenolipids (an arsenic fatty acid AsFA 362 or an arsenic hydrocarbon AsHC 332). The metabolites were analyzed by HPLC-mass spectrometry. The human gut bacteria accumulated arsenolipids in a donor-dependent way, with higher retention of AsHC 332. Colonic microbiota partly transformed both arsenolipids to their thioxo analogs, while AsFA 362 was additionally transformed into arsenic-containing fatty esters, arsenic-containing fatty alcohols, and arsenic-containing sterols. There was no significant difference in water-soluble arsenicals between arsenolipid treatments. The study shows that arsenolipids can be quickly biotransformed into several lipid-soluble arsenicals of unknown toxicity, which cannot be excluded when considering potential implications on human health.
Asunto(s)
Arsénico , Arsenicales , Microbioma Gastrointestinal , Arsénico/análisis , Arsenicales/química , Cromatografía Líquida de Alta Presión/métodos , Ecosistema , HumanosRESUMEN
IMPORTANCE SECTION Research into identification of biomarkers for gut health and ways to modulate the microbiota composition and activity to improve health, has put Akkermansia muciniphila in the spotlight. As a mucin degrader, A. muciniphila colonizes the interesting but not-fully described host-glycan degradation niche., . Plenty of research concerning A. muciniphila has been done, but little is known about its behavior in the complex microbial ecosystem in the colon, about the potential role of mucins to influence A. muciniphila behavior and the impact of its probiotic administration on the microbial ecosystem.This study aimed at investigating the impact of A. muciniphila administration on the endogenous community while also taking into account its nutritional specificity. As such, the effect of A.mucinihpila administration was investigated with and without addition of mucin. This allowed us to elucidate the importance of mucin presence to modulate the efficiency of the probiotic supplementation with A. muciniphila Akkermansia muciniphila is an abundantly present commensal mucin degrading gut bacterium (1 - 4%) , widely distributed among healthy individuals. It has been positioned as a health biomarker and is currently explored as a biotherapeutic agent and next generation probiotic. Preliminary and ongoing research is mostly based on in vivo mouse models and human intervention trials. While these allow the assessment of physiologically relevant endpoints, the analysis of fecal samples presents limitations with respect to the in-depth mechanistic characterization of Akkermansia effects at the level of the microbiome. We aimed to evaluate the effect of A. muciniphila treatment on the endogenous community from four different donors in a validated, controlled in vitro model of the gut microbial ecosystem (SHIME). Taking into account the nutritional specificity of A. muciniphila, and the prebiotic-like action of mucins in the colon environment, the interplay between mucin, A. muciniphila and the endogenous community was investigated. The effects on the microbial community composition and functionality of A. muciniphila supplementation without mucin were limited, whereas mucin addition successfully induced compositional and metabolic changes in the gut microbiota. Indeed, mucin addition resulted in significantly higher acetate, propionate and butyrate production for all four donors, and the increase of several species, including A. muciniphila, Ruminococcus, Clostridium cluster XIVa, and Lachnospiraceae This study revealed that the supplementation of A. muciniphila together with mucin limited the observed prebiotic-like effect of mucin in inducing compositional changes.
RESUMEN
BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) substantially contributes to the burden of diarrheal illnesses in developing countries. With the use of complementary in vitro models of the human digestive environment, TNO gastrointestinal model (TIM-1), and Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we provided the first detailed report on the spatial-temporal modulation of ETEC H10407 survival, virulence, and its interplay with gut microbiota. These systems integrate the main physicochemical parameters of the human upper digestion (TIM-1) and simulate the ileum vs ascending colon microbial communities and luminal vs mucosal microenvironments, captured from six fecal donors (M-SHIME). RESULTS: A loss of ETEC viability was noticed upon gastric digestion, while a growth renewal was found at the end of jejunal and ileal digestion. The remarkable ETEC mucosal attachment helped to maintain luminal concentrations above 6 log10 mL-1 in the ileum and ascending colon up to 5 days post-infection. Seven ETEC virulence genes were monitored. Most of them were switched on in the stomach and switched off in the TIM-1 ileal effluents and in a late post-infectious stage in the M-SHIME ascending colon. No heat-labile enterotoxin production was measured in the stomach in contrast to the ileum and ascending colon. Using 16S rRNA gene-based amplicon sequencing, ETEC infection modulated the microbial community structure of the ileum mucus and ascending colon lumen. CONCLUSIONS: This study provides a better understanding of the interplay between ETEC and gastrointestinal cues and may serve to complete knowledge on ETEC pathogenesis and inspire novel prophylactic strategies for diarrheal diseases.
Asunto(s)
Escherichia coli Enterotoxigénica/fisiología , Escherichia coli Enterotoxigénica/patogenicidad , Infecciones por Escherichia coli/microbiología , Microbioma Gastrointestinal/fisiología , Colon Ascendente/microbiología , Humanos , Íleon/microbiología , Viabilidad MicrobianaRESUMEN
The intestinal absorption of dietary catechins is quite low, resulting in most of them being metabolized by gut microbiota in the colon. It has been hypothesized that microbiota-derived metabolites may be partly responsible for the association between catechin consumption and beneficial cardiometabolic effects. Given the profound differences in gut microbiota composition and microbial load between individuals and across different colon regions, this study examined how microbial (+)-catechin metabolite profiles differ between colon regions and individuals. Batch exploration of the interindividual variability in (+)-catechin microbial metabolism resulted in a stratification based on metabolic efficiency: from the 12 tested donor microbiota, we identified a fast- and a slow-converting microbiota that was subsequently inoculated to SHIME, a dynamic model of the human gut. Monitoring of microbial (+)-catechin metabolites from proximal and distal colon compartments with UHPLC-MS and UPLC-IMS-Q-TOF-MS revealed profound donor-dependent and colon-region-dependent metabolite profiles with 5-(3',4'-dihydroxyphenyl)-γ-valerolactone being the largest contributor to differences between the fast- and slow-converting microbiota and the distal colon being a more important region for (+)-catechin metabolism than the proximal colon. Our findings may contribute to further understanding the role of the gut microbiota as a determinant of interindividual variation in pharmacokinetics upon (+)-catechin ingestion.
Asunto(s)
Catequina/metabolismo , Colon , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Adulto , Variación Biológica Poblacional , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Redes y Vías Metabólicas , Metaboloma , Metabolómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Gut-liver cross talk is an important determinant of human health with profound effects on energy homeostasis. While gut microbes produce a huge range of metabolites, specific compounds such as short-chain fatty acids (SCFAs) can enter the portal circulation and reach the liver (Brandl K, Schnabl B. Curr Opin Gastroenterol 33: 128-133, 2017), a central organ involved in glucose homeostasis and diabetes control. Propionate is a major SCFA involved in activation of intestinal gluconeogenesis (IGN), thereby regulating food intake, enhancing insulin sensitivity, and leading to metabolic homeostasis. Although microbiome-modulating strategies may target the increased microbial production of propionate, it is not clear whether such an effect spreads through to the hepatic cellular level. Here, we designed a propionate-producing consortium using a selection of commensal gut bacteria, and we investigated how their delivered metabolites impact an in vitro enterohepatic model of insulin resistance. Glycogen storage on hepatocyte-like cells and inflammatory markers associated with insulin resistance were evaluated to understand the role of gut metabolites on gut-liver cross talk in a simulated scenario of insulin resistance. The metabolites produced by our consortium increased glycogen synthesis by ~57% and decreased proinflammatory markers such as IL-8 by 12%, thus elucidating the positive effect of our consortium on metabolic function and low-grade inflammation. Our results suggest that microbiota-derived products can be a promising multipurpose strategy to modulate energy homeostasis, with the potential ability to assist in managing metabolic diseases due to their adaptability.
Asunto(s)
Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/metabolismo , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Propionatos/metabolismo , Biomarcadores , Citocinas/metabolismo , Tracto Gastrointestinal/microbiología , Glucógeno/metabolismo , Células Hep G2 , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Hígado/microbiologíaRESUMEN
Chronic kidney disease (CKD) is characterized by accumulation of protein-bound uremic toxins such as p-cresyl sulfate, p-cresyl glucuronide, indoxyl sulfate and indole-3-acetic acid, which originate in the gut. Intestinal bacteria metabolize aromatic amino acids into p-cresol and indole, (further conjugated in the colon mucosa and liver) and indole-3-acetic acid. Here we measured fecal, plasma and urine metabolite concentrations; the contribution of gut bacterial generation to plasma protein-bound uremic toxins accumulation; and influx into the gut of circulating protein-bound uremic toxins at different stages of CKD. Feces, blood and urine were collected from 14 control individuals and 141 patients with CKD. Solutes were quantified by ultra-high performance liquid chromatography. To assess the rate of bacterial generation of p-cresol, indole and indole-3-acetic acid, fecal samples were cultured ex vivo. With CKD progression, an increase in protein-bound uremic toxins levels was observed in plasma, whereas the levels of these toxins and their precursors remained the same in feces and urine. Anaerobic culture of fecal samples showed no difference in ex vivo p-cresol, indole and indole-3-acetic acid generation. Therefore, differences in plasma protein-bound uremic toxins levels between different CKD stages cannot be explained by differences in bacterial generation rates in the gut, suggesting retention due to impaired kidney function as the main contributor to their increased plasma levels. Thus, as fractional clearance decreased with the progression of CKD, tubular clearance appeared to be more affected than the glomerular filtration rate, and there was no net increase in protein-bound uremic toxins influx into the gut lumen with increased plasma levels.
Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Toxinas Biológicas , Uremia , Heces , Humanos , Indicán , Insuficiencia Renal Crónica/diagnósticoRESUMEN
This study compares the metabolic properties of kojibiose, trehalose, sucrose, and xylitol upon incubation with representative oral bacteria as monocultures or synthetic communities or with human salivary bacteria in a defined medium. Compared to sucrose and trehalose, kojibiose resisted metabolism during a 48-h incubation with monocultures, except for Actinomyces viscosus Incubations with Lactobacillus-based communities, as well as salivary bacteria, displayed kojibiose metabolism, yet to a lesser extent than sucrose and trehalose. Concurring with our in vitro findings, screening for carbohydrate-active enzymes revealed that only Lactobacillus spp. and A. viscosus possess enzymes from glycohydrolase (GH) families GH65 and GH15, respectively, which are associated with kojibiose metabolism. Donor-dependent differences in salivary microbiome composition were noted, and differences in pH drop during incubation indicated different rates of sugar metabolism. However, functional analysis indicated that lactate, acetate, and formate evenly dominated the metabolic profile for all sugars except for xylitol. 16S rRNA gene sequencing analysis and α-diversity markers revealed that a significant shift of the microbiome community by sugars was more pronounced in sucrose and trehalose than in kojibiose and xylitol. In Streptococcus spp., a taxon linked to cariogenesis dominated in sucrose (mean ± standard deviation, 91.8 ± 6.4%) and trehalose (55.9 ± 38.6%), representing a high diversity loss. In contrast, Streptococcus (5.1 ± 3.7%) was less abundant in kojibiose, which instead was dominated by Veillonella (26.8 ± 19.6%), while for xylitol, Neisseria (29.4 ± 19.1%) was most abundant. Overall, kojibiose and xylitol incubations stimulated cariogenic species less yet closely maintained an abundance of key phyla and genera of the salivary microbiome, suggesting that kojibiose has low cariogenic properties.IMPORTANCE This study provides a detailed scientific insight on the metabolism of a rare disaccharide, kojibiose, whose mass production has recently been made possible. While the resistance of kojibiose was established with monocultures, delayed utilization of kojibiose was observed with communities containing lactobacilli and A. viscosus as well as with complex communities of bacteria from human saliva. Kojibiose is, therefore, less metabolizable than sucrose and trehalose. Moreover, although conventional sugars cause distinct shifts in salivary microbial communities, our study has revealed that kojibiose is able to closely maintain the salivary microbiome composition, suggesting its low cariogenic properties. This study furthermore underscores the importance and relevance of microbial culture and ex vivo mixed cultures to study cariogenicity and substrate utilization; this is in sharp contrast with tests that solely rely on monocultures such as Streptococcus mutans, which clearly fail to capture complex interactions between oral microbiota.
Asunto(s)
Bacterias/metabolismo , Microbiota , Boca/microbiología , Azúcares/metabolismo , Xilitol/metabolismo , Disacáridos/metabolismo , Humanos , Cinética , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Sacarosa/metabolismo , Trehalosa/metabolismoRESUMEN
The intestinal epithelium plays an essential role in the balance between tolerant and protective immune responses to infectious agents. In vitro models do not typically consider the innate immune response and gut microbiome in detail, so these models do not fully mimic the physiologic aspects of the small intestine. We developed and characterized a long-term in vitro model containing enterocyte, goblet, and immune-like cells exposed to a synthetic microbial community representative of commensal inhabitants of the small intestine. This model showed differential responses toward a synthetic microbial community of commensal bacterial inhabitants of the small intestine in the absence or presence of LPS from Escherichia coli O111:B4. Simultaneous exposure to LPS and microbiota induced impaired epithelial barrier function; increased production of IL-8, IL-6, TNF-α, and C-X-C motif chemokine ligand 16; and augmented differentiation and adhesion of macrophage-like cells and the overexpression of dual oxidase 2 and TLR-2 and -4 mRNA. In addition, the model demonstrated the ability to assess the adhesion of specific bacterial strains from the synthetic microbial community-more specifically, Veillonella parvula-to the simulated epithelium. This novel in vitro model may assist in overcoming sampling and retrieval difficulties when studying host-microbiome interactions in the small intestine.-Calatayud, M., Dezutter, O., Hernandez-Sanabria, E., Hidalgo-Martinez, S., Meysman, F. J. R., Van de Wiele, T. Development of a host-microbiome model of the small intestine.
Asunto(s)
Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Mucosa Intestinal/microbiología , Cultivo Primario de Células/métodos , Células CACO-2 , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo , Escherichia coli/patogenicidad , Células HT29 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Lipopolisacáridos/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Veillonella/patogenicidadRESUMEN
In the context of diseases of affluence, western diets have in the past years mainly been studied on their fat and sugar content and lack of dietary fiber. Yet, the more general aspect of food processing has recently sparked scientific interest as well. In addition, the gut microbiota have been put forward as an important link between diet, obesity and non-communicable diseases (NCD). Western dietary patterns, containing large amounts of processed foods might create an imbalance in the gut system by affecting gut bacteria and their metabolism. Here we discuss what has been already published regarding the relationship between several recently researched features of processed foods and the etiology of obesity and NCD. The addressed features concern micronutrient and energy density, several types of food additives and the generation of advanced glycation end products by thermal treatment during food processing. Overall, literature indicates that all discussed aspects can be linked to western ailments and that they can have a potential negative impact on human microbiota. Therefore, we propose that the thesis that a distressed gut microbiota is a mechanism that might explain how food processing features could harm human health is gaining empirical evidence. Future research will need to address the question whether the alteration of the gut microbiota is a direct or an indirect (via the host) effect. These conclusions are important assets in the fight against the continuing worldwide upsurge of obesity and NCD.
Asunto(s)
Manipulación de Alimentos , Microbioma Gastrointestinal , Enfermedades no Transmisibles/epidemiología , Obesidad/epidemiología , Obesidad/microbiología , Dieta , Fibras de la Dieta , HumanosRESUMEN
BACKGROUND INFORMATION: In vivo oxygen levels in tissues range from 1% to 15%, while mechanistic cell culture studies employ an atmospheric oxygen level of 21% to grow cells. These oxygen concentrations are therefore not representative for conditions where the cell response is dependent on oxygen partial pressure. In pathological situation, such as (colon) cancer or chronic inflammation, tissue oxygenation is severely affected, and even under physiological conditions a steep oxygen gradient is present in the large intestine, where epithelial cells co-exist with microbial species, resulting in almost anoxia at the midpoint of the lumen. In these situations, a better characterisation of the essential cellular behaviour under hypoxia or anoxia is required. RESULTS: We have characterised the cellular response of commonly used cell cultures for the study of intestinal epithelial processes and colon cancer development (Caco-2, HT-29, SW480, HCT 116 and LoVo) under conventional normoxic conditions (21% O2 ) and in an anoxic (<0.1% O2 ) environment generated in an anaerobic chamber. In general, anoxic conditions led to lower levels of oxidative stress, a reduction in reduced glutathione/oxidised glutathione (GSH/GSSG) ratio, the shift of the redox status to oxidised glutathione levels, reduced cell proliferation, decreased barrier function and higher glycolysis rates at the expense of oxidative respiration. CONCLUSIONS: Continuous exposure to anoxic conditions, such as occurring at the host-microbe interface in the intestine, may create an adaptive metabolic cellular response of the cells. SIGNIFICANCE: Considering adequate oxygen levels is essential for creating more physiologically relevant models for the study of host-microbe interactions and colon cancer development.
Asunto(s)
Glutatión/metabolismo , Hipoxia/metabolismo , Mucosa Intestinal/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células CACO-2 , Hipoxia de la Célula , Células HCT116 , Células HT29 , Humanos , Oxidación-Reducción , Estrés OxidativoRESUMEN
Antinuclear antibodies are a hallmark feature of generalized autoimmune diseases, including systemic lupus erythematosus and systemic sclerosis. However, the processes underlying the loss of tolerance against nuclear self-constituents remain largely unresolved. Using mice deficient in lymphotoxin and Hox11, we report that approximately 25% of mice lacking secondary lymphoid organs spontaneously develop specific antinuclear antibodies. Interestingly, we find this phenotype is not caused by a defect in central tolerance. Rather, cell-specific deletion and in vivo lymphotoxin blockade link these systemic autoimmune responses to the formation of gut-associated lymphoid tissue in the neonatal period of life. We further demonstrate antinuclear antibody production is influenced by the presence of commensal gut flora, in particular increased colonization with segmented filamentous bacteria, and IL-17 receptor signaling. Together, these data indicate that neonatal colonization of gut microbiota influences generalized autoimmunity in adult life.
Asunto(s)
Autoinmunidad/inmunología , Microbiota/inmunología , Animales , Anticuerpos Antinucleares/genética , Anticuerpos Antinucleares/inmunología , Autoinmunidad/genética , Femenino , Citometría de Flujo , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismoRESUMEN
AIM: Chronic stress increases disease vulnerability factors including inflammation, a pathological characteristic potentially regulated by the gut microbiota. We checked the association between the gut microbiome and psychosocial stress in children/adolescents and investigated which stress parameter (negative versus positive emotion, self-report versus parental report, events versus emotions, biomarker cortisol versus parasympathetic activity) is the most relevant indicator herein. METHODS: Gut microbiome sequencing was completed in fecal samples from 93 Belgian 8-16y olds. Stress measures included negative events, negative emotions, emotional problems reported by parents, happiness, hair cortisol and heart rate variability (pnn50 parameter reflecting parasympathetic activity). Alpha diversity, beta diversity and linear discriminant analysis were the unadjusted analyses. Age, sex, socio-economic status, diet, physical activity, sleep and weight status were adjusted for via a redundancy analysis and differential abundance via zero-inflated negative binomial regression. RESULTS: High stress as reflected by low pnn50 and more negative events were associated with a lower alpha diversity as indicated by the Simpson index. Happiness and pnn50 showed significant differences between high and low stress groups based on weighted UniFrac distance, and this remained significant after confounder adjustment. Adjusted and unadjusted taxonomic differences were also most pronounced for happiness and pnn50 being associated respectively with 24 OTU (=11.8% of bacterial counts) and 31 OTU (=13.0%). As a general pattern, high stress was associated with lower Firmicutes at the phylum level and higher Bacteroides, Parabacteroides, Rhodococcus, Methanobrevibacter and Roseburia but lower Phascolarctobacterium at genus level. Several genera gave conflicting results between different stress measures e.g. Ruminococcaceae UCG014, Tenericutes, Eubacterium coprostanoligenes, Prevotella 9 and Christensenellaceae R7. Differential results in preadolescents versus adolescents were also evident. CONCLUSION: Even in this young healthy population, stress parameters were cross-sectionally associated with gut microbial composition but this relationship was instrument specific. Positive emotions and parasympathetic activity appeared the strongest parameters and should be integrated in future microbiota projects amongst other stress measures.