Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(3): 915-922, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30598441

RESUMEN

Dispersal provides a key mechanism for geographical range shifts in response to changing environmental conditions. For mangroves, which are highly susceptible to climate change, the spatial scale of dispersal remains largely unknown. Here we use a high-resolution, eddy- and tide-resolving numerical ocean model to simulate mangrove propagule dispersal across the global ocean and generate connectivity matrices between mangrove habitats using a range of floating periods. We find high rates of along-coast transport and transoceanic dispersal across the Atlantic, Pacific, and Indian Oceans. No connectivity is observed between populations on either side of the American and African continents. Archipelagos, such as the Galapagos and those found in Polynesia, Micronesia, and Melanesia, act as critical stepping-stones for dispersal across the Pacific Ocean. Direct and reciprocal dispersal routes across the Indian Ocean via the South Equatorial Current and seasonally reversing monsoon currents, respectively, allow connectivity between western Indian Ocean and Indo-West Pacific sites. We demonstrate the isolation of the Hawaii Islands and help explain the presence of mangroves on the latitudinal outlier Bermuda. Finally, we find that dispersal distance and connectivity are highly sensitive to the minimum and maximum floating periods. We anticipate that our findings will guide future research agendas to quantify biophysical factors that determine mangrove dispersal and connectivity, including the influence of ocean surface water properties on metabolic processes and buoyancy behavior, which may determine the potential of viably reaching a suitable habitat. Ultimately, this will lead to a better understanding of global mangrove species distributions and their response to changing climate conditions.


Asunto(s)
Avicennia/fisiología , Cambio Climático , Modelos Biológicos , Humedales
2.
Sci Total Environ ; 860: 160380, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36427711

RESUMEN

Mangrove distribution maps are used for a variety of applications, ranging from estimates of mangrove extent, deforestation rates, quantify carbon stocks, to modelling response to climate change. There are multiple mangrove distribution datasets, which were derived from different remote sensing data and classification methods, and so there are some discrepancies among these datasets, especially with respect to the locations of their range limits. We investigate the latitudinal discrepancies in poleward mangrove range limits represented by these datasets and how these differences translate climatologically considering factors known to control mangrove distributions. We compare four widely used global mangrove distribution maps - the World Atlas of Mangroves, the World Atlas of Mangroves 2, the Global Distribution of Mangroves, the Global Mangrove Watch. We examine differences in climate among 21 range limit positions by analysing a set of bioclimatic variables that have been commonly related to the distribution of mangroves. Global mangrove maps show important discrepancies in the position of poleward range limits. Latitudinal differences between mangrove range limits in the datasets exceed 5°, 7° and 10° in western North America, western Australia and northern West Africa, respectively. In some range limit areas, such as Japan, discrepancies in the position of mangrove range limits in different datasets correspond to differences exceeding 600 mm in annual precipitation and > 10 °C in the minimum temperature of the coldest month. We conclude that dissimilarities in mapping mangrove range limits in different parts of the world can jeopardise inferences of climatic thresholds. We expect that global mapping efforts should prioritise the position of range limits with greater accuracy, ideally combining data from field-based surveys and very high-resolution remote sensing data. An accurate representation of range limits will contribute to better predicting mangrove range dynamics and shifts in response to climate change.


Asunto(s)
Cambio Climático , Humedales , Frío , Carbono , América del Norte , Ecosistema
3.
Sci Rep ; 13(1): 15180, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704666

RESUMEN

Understanding the migratory patterns of large whales is of conservation importance, especially in identifying threats to specific populations. Migration ecology, including migratory destinations, movements and site fidelity for humpback whales (Megaptera novaeangliae) remain poorly studied in parts of the range of the Central America population, considered endangered under the United States Endangered Species Act. This study aimed to investigate the migratory destinations of humpback whales sighted at two study sites in Nicaragua, which are part of the Central America population. A ten-year photographic database of humpback whales observed off Nicaragua was combined with citizen science contributions and sightings from dedicated research programs. The resulting image collection was compared with available historical photo identifications and databases using an automated image recognition algorithm. This approach yielded 36 years of photographic identification totaling 431 recaptures in Nicaragua (2006-2008 and 2016-2021) and 2539 recaptures (1986-2020) in both feeding and breeding grounds of 176 unique individuals sighted in Nicaragua. Our results showed that photo-identified whales were recaptured between October and April in breeding grounds and year-round in feeding grounds between British Columbia and California, with peak recaptures between June and October. Our study provided first-time evidence on fine-scale site affinity of individual humpback whales within Nicaraguan waters and to other breeding and feeding grounds.


Asunto(s)
Yubarta , Animales , Nicaragua , Fitomejoramiento , América Central , Algoritmos , Cetáceos
4.
Sci Rep ; 11(1): 4987, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654151

RESUMEN

Estimates of population structure and gene flow allow exploring the historical and contemporary processes that determine a species' biogeographic pattern. In mangroves, large-scale genetic studies to estimate gene flow have been conducted predominantly in the Indo-Pacific and Atlantic region. Here we examine the genetic diversity and connectivity of Rhizophora mucronata across a > 3,000 km coastal stretch in the Western Indian Ocean (WIO) including WIO islands. Based on 359 trees from 13 populations and using 17 polymorphic microsatellite loci we detected genetic breaks between populations of the (1) East African coastline, (2) Mozambique Channel Area (3) granitic Seychelles, and (4) Aldabra and northern Madagascar. Genetic structure, diversity levels, and patterns of inferred connectivity, aligned with the directionality of major ocean currents, driven by bifurcation of the South Equatorial Current, northward into the East African Coastal Current and southward into the Mozambique Channel Area. A secondary genetic break between nearby populations in the Delagoa Bight coincided with high inbreeding levels and fixed loci. Results illustrate how oceanographic processes can connect and separate mangrove populations regardless of geographic distance.


Asunto(s)
Flujo Génico , Variación Genética , Rhizophoraceae/genética , Océano Índico
5.
Ecol Evol ; 10(21): 12059-12075, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33209270

RESUMEN

Mangrove ecosystems along the East African coast are often characterized by a disjunct zonation pattern of seaward and landward Avicennia marina trees. This disjunct zonation may be maintained through different positions in the tidal frame, yielding different dispersal settings. The spatial configuration of the landscape and coastal processes such as tides and waves is expected to largely influence the extent of propagule transport and subsequent regeneration. We hypothesized that landward sites would keep a stronger genetic structure over short distances in comparison with enhanced gene flow among regularly flooded seaward fringes. We tested this hypothesis from densely vegetated A. marina transects of a well-documented mangrove system (Gazi Bay, Kenya) and estimated local gene flow and kinship-based fine-scale genetic structure. Ten polymorphic microsatellite markers in 457 A. marina trees revealed no overall significant difference in levels of allele or gene diversities between sites that differ in hydrological proximity. Genetic structure and connectivity of A. marina populations however indicated an overall effect of geographic distance and revealed a pronounced distinction between channels and topographic setting. Migration models allowed to infer gene flow directionality among channels, and indicated a bidirectional steppingstone between seaward and nearest located landward stands. Admixed gene pools without any fine-scale structure were found within the wider and more exposed Kidogoweni channel, suggesting open systems. Elevated kinship values and structure over 5 to 20 m distance were only detected in two distant landward and seaward transects near the mouth of the Mkurumuji River, indicating local retention and establishment. Overall, our findings show that patterns of A. marina connectivity are explained by hydrological proximity, channel network structure, and hydrokinetic energy, rather than just their positioning as disjunct landward or seaward zones.

6.
Biol Rev Camb Philos Soc ; 94(4): 1547-1575, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31058451

RESUMEN

Dispersal allows species to shift their distributions in response to changing climate conditions. As a result, dispersal is considered a key process contributing to a species' long-term persistence. For many passive dispersers, fluid dynamics of wind and water fuel these movements and different species have developed remarkable adaptations for utilizing this energy to reach and colonize suitable habitats. The seafaring propagules (fruits and seeds) of mangroves represent an excellent example of such passive dispersal. Mangroves are halophytic woody plants that grow in the intertidal zones along tropical and subtropical shorelines and produce hydrochorous propagules with high dispersal potential. This results in exceptionally large coastal ranges across vast expanses of ocean and allows species to shift geographically and track the conditions to which they are adapted. This is particularly relevant given the challenges presented by rapid sea-level rise, higher frequency and intensity of storms, and changes in regional precipitation and temperature regimes. However, despite its importance, the underlying drivers of mangrove dispersal have typically been studied in isolation, and a conceptual synthesis of mangrove oceanic dispersal across spatial scales is lacking. Here, we review current knowledge on mangrove propagule dispersal across the various stages of the dispersal process. Using a general framework, we outline the mechanisms and ecological processes that are known to modulate the spatial patterns of mangrove dispersal. We show that important dispersal factors remain understudied and that adequate empirical data on the determinants of dispersal are missing for most mangrove species. This review particularly aims to provide a baseline for developing future research agendas and field campaigns, filling current knowledge gaps and increasing our understanding of the processes that shape global mangrove distributions.


Asunto(s)
Avicennia/fisiología , Ecosistema , Dispersión de las Plantas , Rhizophoraceae/fisiología , Semillas/fisiología , Factores de Tiempo
7.
Front Plant Sci ; 9: 806, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951080

RESUMEN

Coastal salt- and brackish water lagoons are unique shallow habitats characterized by beds of submerged seagrasses and salt-tolerant Ruppia species. Established long-term and large-scale patterns of connectivity in lagoon systems can be strongly determined by patterns of nearshore and coastal currents next to local bird-mediated seed dispersal. Despite the importance of dispersal in landscape ecology, characterizing patterns of connectivity remains challenging in aquatic systems. Here, we aimed at inferring connectivity distances of Ruppia cirrhosa along European coastal lagoons using a population genetic imprint and modeled dispersal trajectories using an eddy-resolving numerical ocean model that includes tidal forcing. We investigated 1,303 individuals of 46 populations alongside subbasins of the Mediterranean (Balearic, Tyrrhenian, Ionian) and the Atlantic to Baltic Sea coastline over maximum distances of 563-2,684 km. Ten microsatellite loci under an autotetraploid condition revealed a mixed sexual and vegetative reproduction mode. A pairwise FST permutation test of populations revealed high levels of historical connectivity only for distance classes up to 104-280 km. Since full range analysis was not fully explanatory, we assessed connectivity in more detail at coastline and subbasin level using four approaches. Firstly, a regression over restricted geographical distances (300 km) was done though remained comparable to full range analysis. Secondly, piecewise linear regression analyses yielded much better explained variance but the obtained breakpoints were shifted toward greater geographical distances due to a flat slope of regression lines that most likely reflect genetic drift. Thirdly, classification and regression tree analyses revealed threshold values of 47-179 km. Finally, simulated ocean surface dispersal trajectories for propagules with floating periods of 1-4 weeks, were congruent with inferred distances, a spatial Bayesian admixed gene pool clustering and a barrier detection method. A kinship based spatial autocorrelation showed a contemporary within-lagoon connectivity up to 20 km. Our findings indicate that strong differentiation or admixtures shaped historical connectivity and that a pre- and post LGM genetic imprint of R. cirrhosa along the European coasts was maintained from their occurrence in primary habitats. Additionally, this study demonstrates the importance of unraveling thresholds of genetic breaks in combination with ocean dispersal modeling to infer patterns of connectivity.

8.
PLoS One ; 11(3): e0150950, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26964094

RESUMEN

Mangroves are seafaring taxa through their hydrochorous propagules that have the potential to disperse over long distances. Therefore, investigating their patterns of gene flow provides insights on the processes involved in the spatial genetic structuring of populations. The coastline of Cameroon has a particular geomorphological history and coastal hydrology with complex contemporary patterns of ocean currents, which we hypothesize to have effects on the spatial configuration and composition of present-day mangroves within its spans. A total of 982 trees were sampled from 33 transects (11 sites) in 4 estuaries. Using 11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora racemosa, a widespread species in the region. Genetic diversity was low to moderate and genetic differentiation between nearly all population pairs was significant. Bayesian clustering analysis, PCoA, estimates of contemporary migration rates and identification of barriers to gene flow were used and complemented with estimated dispersal trajectories of hourly released virtual propagules, using high-resolution surface current from a mesoscale and tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL) is not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC) corridor, formed due to sea level rise, allows for connectivity between two mangrove areas that were isolated during glacial times by the CVL. Genetic data and numerical ocean simulations indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC) presents a strong barrier to gene flow, resulting in genetic discontinuities between the mangrove areas on either side. This convergence did not result in higher genetic diversity at the CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa is maintained by the contrasting effects of the contemporary oceanic convergence and historical climate change-induced sea level rise.


Asunto(s)
Flujo Génico/fisiología , Variación Genética/fisiología , Modelos Genéticos , Rhizophoraceae/genética , Humedales , Océano Atlántico , Camerún
9.
PLoS One ; 10(3): e0121593, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811191

RESUMEN

Although knowledge on dispersal patterns is essential for predicting long-term population dynamics, critical information on the modalities of passive dispersal and potential interactions between vectors is often missing. Here, we use mangrove propagules with a wide variety of morphologies to investigate the interaction between water and wind as a driver of passive dispersal. We imposed 16 combinations of wind and hydrodynamic conditions in a flume tank, using propagules of six important mangrove species (and genera), resulting in a set of dispersal morphologies that covers most variation present in mangrove propagules worldwide. Additionally, we discussed the broader implications of the outcome of this flume study on the potential of long distance dispersal for mangrove propagules in nature, applying a conceptual model to a natural mangrove system in Gazi Bay (Kenya). Overall, the effect of wind on dispersal depended on propagule density (g l(-1)). The low-density Heritiera littoralis propagules were most affected by wind, while the high-density vertically floating propagules of Ceriops tagal and Bruguiera gymnorrhiza were least affected. Avicennia marina, and horizontally floating Rhizophora mucronata and C. tagal propagules behaved similarly. Morphological propagule traits, such as the dorsal sail of H. littoralis, explained another part of the interspecific differences. Within species, differences in dispersal velocities can be explained by differences in density and for H. littoralis also by variations in the shape of the dorsal sail. Our conceptual model illustrates that different propagule types have a different likelihood of reaching the open ocean depending on prevailing water and wind currents. Results suggest that in open water, propagule traits (density, morphology, and floating orientation) appear to determine the effect of water and wind currents on dispersal dynamics. This has important implications for inter- and intraspecific variation in dispersal patterns and the likelihood of reaching suitable habitat patches within a propagule's viable period.


Asunto(s)
Magnoliopsida , Dispersión de Semillas , Agua , Viento
10.
PLoS One ; 9(8): e105069, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25144689

RESUMEN

Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia is under systematic management since 1902 and still considered as the best managed mangrove forest in the world. The present study on silvimetrics assessed the ongoing MMFR forest management, which includes a first thinning after 15 years, a second thinning after 20 years and clear-felling of 30-year old forest blocks, for its efficiency and productivity in comparison to natural mangroves. The estimated tree structural parameters (e.g. density, frequency) from three different-aged mangrove blocks of fifteen (MF15), twenty (MF20), and thirty (MF30) years old indicated that Bruguiera and Excoecaria spp. did not constitute a significant proportion of the vegetation (<5%), and hence the results focused majorly on Rhizophora apiculata. The density of R. apiculata at MF15, MF20 and MF30 was 4,331, 2,753 and 1,767 stems ha(-1), respectively. In relation to ongoing practices of the artificial thinnings at MMFR, the present study suggests that the first thinning could be made earlier to limit the loss of exploitable wood due to natural thinning. In fact, the initial density at MF15 was expected to drop down from 6,726 to 1,858 trees ha(-1) before the first thinning. Therefore the trees likely to qualify for natural thinning, though having a smaller stem diameter, should be exploited for domestic/commercial purposes at an earlier stage. The clear-felling block (MF30) with a maximum stem diameter of 30 cm was estimated to yield 372 t ha(-1) of the above-ground biomass and suggests that the mangrove management based on a 30-year rotation is appropriate for the MMFR. Since Matang is the only iconic site that practicing sustainable wood production, it could be an exemplary to other mangrove locations for their improved management.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Malasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA