Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Pharmacol Exp Ther ; 373(2): 230-238, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32054717

RESUMEN

Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis is long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects. In our study, we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer-induced bone pain. Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activates CB1 and CB2 receptors to inhibit inflammation and pain. We demonstrate that administration of MJN110 significantly and dose dependently alleviates spontaneous pain behavior during acute administration compared with vehicle control. In addition, MJN110 maintains its efficacy in a chronic-dosing paradigm over the course of 7 days without signs of receptor sensitization. In vitro analysis of MJN110 demonstrated a dose-dependent and significant decrease in cell viability and proliferation of 66.1 breast adenocarcinoma cells to a greater extent than KML29, an alternate MAGL inhibitor, or the CB2 agonist JWH015. Chronic administration of the compound did not appear to affect tumor burden, as evidenced by radiograph or histologic analysis. Together, these data support the application for MJN110 as a novel therapeutic for cancer-induced bone pain. SIGNIFICANCE STATEMENT: Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non-opioid-based therapies is essential, and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone.


Asunto(s)
Neoplasias Óseas/secundario , Dolor en Cáncer/tratamiento farmacológico , Carbamatos/uso terapéutico , Endocannabinoides/fisiología , Neoplasias Mamarias Experimentales/patología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Succinimidas/uso terapéutico , Animales , Neoplasias Óseas/fisiopatología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Endogámicos BALB C , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología
2.
Mol Psychiatry ; 23(8): 1745-1755, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28485408

RESUMEN

Development of an efficacious, non-addicting analgesic has been challenging. Discovery of novel mechanisms underlying addiction may present a solution. Here we target the neurokinin system, which is involved in both pain and addiction. Morphine exerts its rewarding actions, at least in part, by inhibiting GABAergic input onto substance P (SP) neurons in the ventral tegmental area (VTA), subsequently increasing SP release onto dopaminergic neurons. Genome editing of the neurokinin 1 receptor (NK1R) in the VTA renders morphine non-rewarding. Complementing our genetic approach, we demonstrate utility of a bivalent pharmacophore with dual activity as a µ/δ opioid agonist and NK1R antagonist in inhibiting nociception in an animal model of acute pain while lacking any positive reinforcement. These data indicate that dual targeting of the dopaminergic reward circuitry and pain pathways with a multifunctional opioid agonist-NK1R antagonist may be an efficacious strategy in developing future analgesics that lack abuse potential.


Asunto(s)
Antagonistas del Receptor de Neuroquinina-1/farmacología , Trastornos Relacionados con Opioides/prevención & control , Receptores de Neuroquinina-1/metabolismo , Dolor Agudo/tratamiento farmacológico , Dolor Agudo/metabolismo , Analgésicos/farmacología , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Dopamina/metabolismo , Escherichia coli , Técnicas de Silenciamiento del Gen , Masculino , Ratones Endogámicos ICR , Morfina/farmacología , Dolor Nociceptivo/tratamiento farmacológico , Dolor Nociceptivo/metabolismo , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/metabolismo , Ratas Sprague-Dawley , Receptores de Neuroquinina-1/genética , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Recompensa , Sustancia P/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
4.
J Pharmacol Exp Ther ; 347(1): 7-19, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23860305

RESUMEN

The most highly abused prescription drugs are opioids used for the treatment of pain. Physician-reported drug-seeking behavior has resulted in a significant health concern among doctors trying to adequately treat pain while limiting the misuse or diversion of pain medications. In addition to abuse liability, opioid use is associated with unwanted side effects that complicate pain management, including opioid-induced emesis and constipation. This has resulted in restricting long-term doses of opioids and inadequate treatment of both acute and chronic debilitating pain, demonstrating a compelling need for novel analgesics. Recent reports indicate that adaptations in endogenous substance P/neurokinin-1 receptor (NK1) are induced by chronic pain and sustained opioid exposure, and these changes may contribute to processes responsible for opioid abuse liability, emesis, and analgesic tolerance. Here, we describe a multifunctional mu-/delta-opioid agonist/NK1 antagonist compound [Tyr-d-Ala-Gly-Phe-Met-Pro-Leu-Trp-NH-Bn(CF3)2 (TY027)] that has a preclinical profile of excellent antinociceptive efficacy, low abuse liability, and no opioid-related emesis or constipation. In rodent models of acute and neuropathic pain, TY027 demonstrates analgesic efficacy following central or systemic administration with a plasma half-life of more than 4 hours and central nervous system penetration. These data demonstrate that an innovative opioid designed to contest the pathology created by chronic pain and sustained opioids results in antinociceptive efficacy in rodent models, with significantly fewer side effects than morphine. Such rationally designed, multitargeted compounds are a promising therapeutic approach in treating patients who suffer from acute and chronic pain.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Dimensión del Dolor/efectos de los fármacos , Dolor/tratamiento farmacológico , Receptores de Neuroquinina-1/metabolismo , Nervios Espinales/efectos de los fármacos , Nervios Espinales/lesiones , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/química , Animales , Hurones , Inyecciones Intraventriculares , Inyecciones Espinales , Masculino , Ratones , Ratones Endogámicos ICR , Morfina/administración & dosificación , Morfina/efectos adversos , Naloxona/administración & dosificación , Naloxona/efectos adversos , Dolor/patología , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Receptores de Neuroquinina-1/fisiología , Nervios Espinales/patología , Resultado del Tratamiento
5.
J Neurosci ; 21(1): 279-86, 2001 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11150345

RESUMEN

Many clinical case reports have suggested that sustained opioid exposure can elicit unexpected, paradoxical pain. Here, we explore the possibility that (1) opioid-induced pain results from tonic activation of descending pain facilitation arising in the rostral ventromedial medulla (RVM) and (2) the presence of such pain manifests behaviorally as antinociceptive tolerance. Rats implanted subcutaneously with pellets or osmotic minipumps delivering morphine displayed time-related tactile allodynia and thermal hyperalgesia (i. e., opioid-induced "pain"); placebo pellets or saline minipumps did not change thresholds. Opioid-induced pain was observed while morphine delivery continued and while the rats were not in withdrawal. RVM lidocaine, or bilateral lesions of the dorsolateral funiculus (DLF), did not change response thresholds in placebo-pelleted rats but blocked opioid-induced pain. The intrathecal morphine antinociceptive dose-response curve (DRC) in morphine-pelleted rats was displaced to the right of that in placebo-pelleted rats, indicating antinociceptive "tolerance." RVM lidocaine or bilateral DLF lesion did not alter the intrathecal morphine DRC in placebo-pelleted rats but blocked the rightward displacement seen in morphine-pelleted animals. The subcutaneous morphine antinociceptive DRC in morphine-pelleted rats was displaced to the right of that in placebo-pelleted rats; this right shift was blocked by RVM lidocaine. The data show that (1) opioids elicit pain through tonic activation of bulbospinal facilitation from the RVM, (2) increased pain decreases spinal opioid antinociceptive potency, and (3) blockade of pain restores antinociceptive potency, revealing no change in antinociceptive signal transduction. These studies offer a mechanism for paradoxical opioid-induced pain and allow the development of approaches by which the loss of analgesic activity of opioids might be inhibited.


Asunto(s)
Analgésicos/administración & dosificación , Tolerancia a Medicamentos , Bulbo Raquídeo/fisiopatología , Narcóticos/efectos adversos , Dolor/fisiopatología , Animales , Relación Dosis-Respuesta a Droga , Implantes de Medicamentos , Calor , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Lidocaína/administración & dosificación , Masculino , Bulbo Raquídeo/efectos de los fármacos , Microinyecciones , Morfina/administración & dosificación , Morfina/efectos adversos , Narcóticos/administración & dosificación , Compresión Nerviosa , Dolor/inducido químicamente , Dimensión del Dolor/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Estimulación Física , Ratas , Tiempo de Reacción/efectos de los fármacos , Traumatismos de la Médula Espinal/fisiopatología
6.
J Neurosci ; 23(23): 8370-9, 2003 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-12967999

RESUMEN

Nerve injury-induced afferent discharge is thought to elicit spinal sensitization and consequent abnormal pain. Experimental neuropathic pain, however, also depends on central changes, including descending facilitation arising from the rostral ventromedial medulla (RVM) and upregulation of spinal dynorphin. A possible intersection of these influences at the spinal level was explored by measuring evoked, excitatory transmitter release in tissues taken from nerve-injured animals with or without previous manipulation of descending modulatory systems. Spinal nerve ligation (SNL) produced expected tactile and thermal hyperesthesias. Capsaicin-evoked calcitonin gene-related peptide (CGRP) release was markedly enhanced in lumbar spinal tissue from SNL rats when compared with sham-operated controls. Enhanced, evoked CGRP release from SNL rats was blocked by anti-dynorphin A(1-13) antiserum; this treatment did not alter evoked release in tissues from sham-operated rats. Dorsolateral funiculus lesion (DLF) or destruction of RVM neurons expressing mu-opioid receptors with dermorphin-saporin, blocked tactile and thermal hypersensitivity, as well as SNL-induced upregulation of spinal dynorphin. Spinal tissues from these DLF-lesioned or dermorphin-saporin-treated SNL rats did not exhibit enhanced capsaicin-evoked CGRP-IR release. These data demonstrate exaggerated release of excitatory transmitter from primary afferents after injury to peripheral nerves, supporting the likely importance of increased afferent input as a driving force of neuropathic pain. The data also show that modulatory influences of descending facilitation are required for enhanced evoked transmitter release after nerve injury. Thus, convergence of descending modulation, spinal plasticity, and afferent drive in the nerve-injured state reveals a mechanism by which some aspects of nerve injury-induced hyperesthesias may occur.


Asunto(s)
Vías Aferentes/fisiopatología , Síndromes de Compresión Nerviosa/fisiopatología , Neuralgia/fisiopatología , Neurotransmisores/metabolismo , Nervios Espinales/fisiopatología , Vías Aferentes/metabolismo , Analgésicos Opioides/farmacología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Capsaicina/farmacología , Modelos Animales de Enfermedad , Dinorfinas/metabolismo , Encefalinas/metabolismo , Hiperestesia/etiología , Hiperestesia/fisiopatología , Ligadura , Región Lumbosacra , Masculino , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/fisiopatología , Microinyecciones , N-Glicosil Hidrolasas , Síndromes de Compresión Nerviosa/complicaciones , Neuralgia/etiología , Plasticidad Neuronal , Oligopéptidos/farmacología , Péptidos Opioides , Dimensión del Dolor/efectos de los fármacos , Precursores de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/efectos de los fármacos , Receptores Opioides mu/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 1 , Saporinas , Umbral Sensorial/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Nervios Espinales/metabolismo
7.
J Neurosci ; 21(5): 1779-86, 2001 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11222667

RESUMEN

Whereas tissue injury increases spinal dynorphin expression, the functional relevance of this upregulation to persistent pain is unknown. Here, mice lacking the prodynorphin gene were studied for sensitivity to non-noxious and noxious stimuli, before and after induction of experimental neuropathic pain. Prodynorphin knock-out (KO) mice had normal responses to acute non-noxious stimuli and a mild increased sensitivity to some noxious stimuli. After spinal nerve ligation (SNL), both wild-type (WT) and KO mice demonstrated decreased thresholds to innocuous mechanical and to noxious thermal stimuli, indicating that dynorphin is not required for initiation of neuropathic pain. However, whereas neuropathic pain was sustained in WT mice, KO mice showed a return to baselines by post-SNL day 10. In WT mice, SNL upregulated lumbar dynorphin content on day 10, but not day 2, after injury. Intrathecal dynorphin antiserum reversed neuropathic pain in WT mice at post-SNL day 10 (when dynorphin was upregulated) but not on post-SNL day 2; intrathecal MK-801 reversed SNL-pain at both times. Opioid (mu, delta, and kappa) receptor density and G-protein activation were not different between WT and KO mice and were unchanged by SNL injury. The observations suggest (1) an early, dynorphin-independent phase of neuropathic pain and a later dynorphin-dependent stage, (2) that upregulated spinal dynorphin is pronociceptive and required for the maintenance of persistent neuropathic pain, and (3) that processes required for the initiation and the maintenance of the neuropathic pain state are distinct. Identification of mechanisms that maintain neuropathic pain appears important for strategies to treat neuropathic pain.


Asunto(s)
Dinorfinas/metabolismo , Neuralgia/metabolismo , Neuralgia/fisiopatología , Nervios Espinales/fisiopatología , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Maleato de Dizocilpina/administración & dosificación , Dinorfinas/antagonistas & inhibidores , Dinorfinas/farmacología , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Hiperestesia/metabolismo , Hiperestesia/fisiopatología , Sueros Inmunes/administración & dosificación , Inyecciones Espinales , Ligadura , Región Lumbosacra , Masculino , Ratones , Ratones Noqueados , Neuralgia/tratamiento farmacológico , Dimensión del Dolor/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Estimulación Física , Tiempo de Reacción/efectos de los fármacos , Receptores Opioides/análisis , Receptores Opioides/metabolismo , Médula Espinal/química , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Nervios Espinales/cirugía
8.
J Neurosci ; 21(14): 5281-8, 2001 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-11438603

RESUMEN

Neurons in the rostroventromedial medulla (RVM) project to spinal loci where the neurons inhibit or facilitate pain transmission. Abnormal activity of facilitatory processes may thus represent a mechanism of chronic pain. This possibility and the phenotype of RVM cells that might underlie experimental neuropathic pain were investigated. Cells expressing mu-opioid receptors were targeted with a single microinjection of saporin conjugated to the mu-opioid agonist dermorphin; unconjugated saporin and dermorphin were used as controls. RVM dermorphin-saporin, but not dermorphin or saporin, significantly decreased cells expressing mu-opioid receptor transcript. RVM dermorphin, saporin, or dermorphin-saporin did not change baseline hindpaw sensitivity to non-noxious or noxious stimuli. Spinal nerve ligation (SNL) injury in rats pretreated with RVM dermorphin-saporin failed to elicit the expected increase in sensitivity to non-noxious mechanical or noxious thermal stimuli applied to the paw. RVM dermorphin or saporin did not alter SNL-induced experimental pain, and no pretreatment affected the responses of sham-operated groups. This protective effect of dermorphin-saporin against SNL-induced pain was blocked by beta-funaltrexamine, a selective mu-opioid receptor antagonist, indicating specific interaction of dermorphin-saporin with the mu-opioid receptor. RVM microinjection of dermorphin-saporin, but not of dermorphin or saporin, in animals previously undergoing SNL showed a time-related reversal of the SNL-induced experimental pain to preinjury baseline levels. Thus, loss of RVM mu receptor-expressing cells both prevents and reverses experimental neuropathic pain. The data support the hypothesis that inappropriate tonic-descending facilitation may underlie some chronic pain states and offer new possibilities for the design of therapeutic strategies.


Asunto(s)
Tronco Encefálico/efectos de los fármacos , Inmunotoxinas , N-Glicosil Hidrolasas , Neuralgia/tratamiento farmacológico , Neuronas/efectos de los fármacos , Receptores Opioides mu/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/administración & dosificación , Animales , Conducta Animal/efectos de los fármacos , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Modelos Animales de Enfermedad , Ligadura , Masculino , Bulbo Raquídeo/citología , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/metabolismo , Microinyecciones , Naltrexona/administración & dosificación , Naltrexona/análogos & derivados , Neuralgia/fisiopatología , Neuronas/metabolismo , Oligopéptidos/administración & dosificación , Péptidos Opioides , Dimensión del Dolor/efectos de los fármacos , Estimulación Física , Proteínas de Plantas/administración & dosificación , Ensayo de Unión Radioligante , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Receptores Opioides mu/biosíntesis , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/química , Proteínas Inactivadoras de Ribosomas Tipo 1 , Saporinas , Nervios Espinales/lesiones , Nervios Espinales/fisiopatología
9.
Peptides ; 26(10): 1972-7, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15992962

RESUMEN

Melanocortin receptors in the forebrain and spinal cord can be activated by endogenous or synthetic ligands to induce penile erection in rats and human subjects. To better understand how melanocortin circuits play a role in sex behavior, we review the contribution of melanocortin receptors and/or neurons in the hypothalamus, hindbrain, spinal cord and peripheral nerves to erectile function. New information regarding neuropeptides that mediate penile erection has extended our understanding of the central control of sex behavior, and melanocortin agonists may provide alternatives to existing treatment for highly prevalent problems including erectile dysfunction.


Asunto(s)
Hormonas Estimuladoras de los Melanocitos/fisiología , Erección Peniana/fisiología , Proopiomelanocortina/fisiología , Animales , Humanos , Masculino , Hormonas Estimuladoras de los Melanocitos/agonistas , Hormonas Estimuladoras de los Melanocitos/química , Vías Nerviosas/fisiología , Proopiomelanocortina/química , Prosencéfalo/metabolismo , Prosencéfalo/fisiología , Médula Espinal/química , Médula Espinal/metabolismo , Médula Espinal/fisiología
10.
Pain ; 100(3): 243-248, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12467995

RESUMEN

Spinal antinociception produced by delta 9-tetrahydro-cannabinol (Delta(9)-THC) and other cannabinoid agonists has been suggested to be mediated by the release of dynorphin acting at the kappa opioid receptor. Alternatively, as cannabinoid receptors are distributed appropriately in the pain transmission pathway, cannabinoid agonists might act directly at the spinal level to inhibit nociception, without requiring dynorphin release. Here, these possibilities were explored using mice with a deletion of the gene encoding prodynorphin. Antinociceptive dose-response curves were constructed for spinal Delta(9)-THC and WIN 55,212-2 in prodynorphin knock-out mice and in wild-type littermates. WIN 55,212-2 and Delta(9)-THC were equipotent in the wild-type and prodynorphin knock-out mice. Spinal pretreatment with a kappa opioid receptor antagonist, nor-binaltorphimine (nor-BNI), did not alter the dose-response curves for either WIN 55,212-2 or Delta(9)-THC in prodynorphin knock-out and wild-type mice. However, the same dose of nor-BNI used blocked U50,488H-induced antinociception in both wild-type and prodynorphin knock-out mice, confirming kappa opioid receptor activity. Pretreatment with SR141716A, a cannabinoid receptor antagonist blocked the antinociceptive actions of both WIN 55,212-2 and Delta(9)-THC. These data support the conclusion that antinociception produced by spinal cannabinoids are likely to be mediated directly through activation of cannabinoid receptors without the requirement for dynorphin release or activation of kappa opioid receptors.


Asunto(s)
Dronabinol/administración & dosificación , Dinorfinas/deficiencia , Morfolinas/administración & dosificación , Naltrexona/análogos & derivados , Naftalenos/administración & dosificación , Dimensión del Dolor/efectos de los fármacos , Dolor/tratamiento farmacológico , Médula Espinal/efectos de los fármacos , Analgésicos/administración & dosificación , Analgésicos no Narcóticos/administración & dosificación , Animales , Benzoxazinas , Relación Dosis-Respuesta a Droga , Inyecciones Espinales , Masculino , Ratones , Ratones Noqueados , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Método Simple Ciego , Especificidad de la Especie
11.
Pain ; 71(1): 57-64, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9200174

RESUMEN

Nerve ligation injury in rats results in reduced nociceptive and non-nociceptive thresholds, similar to some aspects of clinical conditions of neuropathic pain. Since underlying mechanisms of hyperalgesia and allodynia may differ, the present study investigated the pharmacology of morphine and MK-801 in rats subjected to a tight ligation of the L5 and L6 nerve roots or to a sham-operation procedure. Response to acute nociception was measured by (a) withdrawal of a hindpaw from a radiant heat source, (b) withdrawal of the tail from a radiant heat source or (c) the latency to a rapid flick of the tail following immersion in water at different noxious temperatures. Mechanical thresholds were determined by measuring response threshold to probing the hindpaw with von Frey filaments. Nerve ligation produced a significant, stable and long-lasting decrease in threshold to mechanical stimulation (i.e., tactile allodynia) when compared to sham-operated controls. Standardization of the diameter of the filaments (to that of the largest filament) did not alter the response threshold in nerve-injured animals. Nerve ligation produced decreased response latency of the ipsilateral paw (i.e., hyperalgesia) when compared to that of sham-operated rats. Tail-flick latencies to thermal stimuli induced by water at constant temperatures (48 degrees, 52 degrees or 55 degrees C) or by radiant heat were not significantly different between nerve-injured and sham-operated groups. At doses which were not behaviorally toxic, MK-801 had no effect on tactile allodynia. At these doses, MK-801 blocked decreased paw withdrawal latency to radiant heat in nerve-injured rats, but did not significantly elevate the response threshold of sham-operated rats. Systemic (i.p.) or intracerebroventricular (i.c.v.) doses of morphine previously shown to be antiallodynic in nerve-ligated rats did not affect the response to probing with von Frey filaments in sham-operated controls. Intrathecal (i.t.) morphine did not change paw withdrawal thresholds elicited by von Frey filaments of either nerve-ligated rats (as previously reported) or of sham-operated rats at doses maximally effective against thermal stimuli applied to the tail or foot. Spinal morphine produced dose-dependent antinociception in both nerve-injured and sham-operated groups in the foot-flick test but was less potent in the nerve-injured group. Presuppression of hyperalgesia of the foot with i.t. MK-801 in nerve-injured animals did not alter the potency of i.t. morphine. I.t. morphine was also active in the tail-flick tests with decreased potency in nerve-injured animals and, at some stimulus intensities, with a decreased efficacy as well. These data emphasize the distinction between the inactivity of morphine to suppress mechanical withdrawal thresholds (as elicited by von Frey filaments) and the activity of this compound to block the response to an acute thermal nociceptive stimulus in sham-operated or nerve-injured rats. It appears that nerve ligation injury produces a thermal allodynia/hyperalgesia which is likely dependent upon opioid-sensitive small-diameter primary afferent fibers and a mechanical allodynia which may be largely independent of small-fiber input.


Asunto(s)
Analgésicos Opioides/farmacología , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hiperalgesia/tratamiento farmacológico , Morfina/farmacología , Traumatismos de los Nervios Periféricos , Analgésicos Opioides/administración & dosificación , Animales , Maleato de Dizocilpina/administración & dosificación , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Calor , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Masculino , Morfina/administración & dosificación , Dimensión del Dolor/efectos de los fármacos , Estimulación Física , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Factores de Tiempo
12.
Pain ; 72(1-2): 253-60, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9272810

RESUMEN

The endogenous opioid peptide dynorphin A has non-opioid effects that can damage the spinal cord when given in high doses. Dynorphin has been shown to increase the receptive field size of spinal cord neurons and facilitate C-fiber-evoked reflexes. Furthermore, endogenous dynorphin levels increase following damage to the spinal cord, injury to peripheral nerves, or inflammation. In this study, sensory processing was characterized following a single, intrathecal injection of dynorphin A (1-17) in mice. A single intrathecal injection of dynorphin A (1-17) (3 nmol, i.t.) induced mechanical allodynia (hind paw, von Frey filaments) lasting 70 days, tactile allodynia (paint brush applied to flank) lasting 14 days, and cold allodynia (acetone applied to the dorsal hind paw) lasting 7 days. Similarly, dynorphin A (2-17) (3 nmol, i.t.), a non-opioid peptide, induced cold and tactile allodynia analogous to that induced by dynorphin A (1-17), indicating the importance of non-opioid receptors. Pretreatment with the NMDA antagonists, MK-801 and LY235959, but not the opioid antagonist, naloxone, blocked the induction of allodynia. Post-treatment with MK-801 only transiently blocked the dynorphin-induced allodynia, suggesting the NMDA receptors may be involved in the maintenance of allodynia as well as its induction. We have induced a long-lasting state of allodynia and hyperalgesia by a single intrathecal injection of dynorphin A (1-17) in mice. The allodynia induced by dynorphin required NMDA receptors rather than opioid receptors. This result is consistent with results in rats and with signs of clinically observed neuropathic pain. This effect of exogenously administered dynorphin raises the possibility that increased levels of endogenous dynorphins associated with spinal cord injuries may participate in the genesis and maintenance of neuropathic pain.


Asunto(s)
Dinorfinas/uso terapéutico , Antagonistas de Aminoácidos Excitadores/farmacología , Dolor/inducido químicamente , Receptores de N-Metil-D-Aspartato/fisiología , Receptores Opioides/fisiología , Animales , Maleato de Dizocilpina/farmacología , Inyecciones Espinales , Isoquinolinas/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Antagonistas de Narcóticos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
13.
Pain ; 68(2-3): 275-81, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9121815

RESUMEN

Neuropathic pain states are accompanied by increased sensitivity to both noxious and non-noxious sensory stimuli, characterized as hyperalgesia and allodynia, respectively. In animal models of neuropathic pain, the presence of hyperalgesia and allodynia are accompanied by neuroplastic changes including increased spinal levels of substance P, cholecystokinin (CCK), and dynorphin. N-Methyl-D-aspartate (NMDA) receptors appear to be involved in maintaining the central sensitivity which contributes to neuropathic pain. In addition to its opioid activities, dynorphin has been suggested to act at the NMDA receptor complex. In an attempt to mimic the increased levels of spinal dynorphin seen in animal models of neuropathic pain, rats received a single intrathecal (i.t.) injection of dynorphin A(1-17), dynorphin A(1-13), dynorphin A(2-17) or dynorphin A(2-13) through indwelling catheters. Tactile allodynia was determined by measuring response threshold to probing with von Frey filaments. Dynorphin A(1-17) administration evoked significant and long-lasting tactile allodynia (i.e. > 60 days). Likewise, the i.t. administration of dynorphin A(1-13) or dynorphin A(2-17) or dynorphin A(2-13) also produced long-lasting tactile allodynia. Intrathecal pretreatment, but not post-treatment, with MK-801 prevented dynorphin A(1-17)-induced development of allodynia; i.t. administration of MK-801 alone had no effect on responses to tactile stimuli. In contrast, i.t. pretreatment with naloxone did not affect the development of tactile allodynia induced by dynorphin A(1-17) or alter sensory threshold when given alone. These results demonstrate that a single dose of dynorphin A, or its des-Tyr fragments, produces long-lasting allodynia which may be irreversible in the rat. Further, this effect appears to be mediated through activation of NMDA, rather than opioid, receptors. While the precise mechanisms underlying the development and maintenance of the allodynia is unclear, it seems possible that dynorphin may produce changes in the spinal cord, which may contribute to the development of signs reminiscent of a "neuropathic' state. Given that levels of dynorphin are elevated following nerve injury, it seems reasonable to speculate that dynorphin may have a pathologically relevant role in neuropathic pain states.


Asunto(s)
Dinorfinas/antagonistas & inhibidores , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Antagonistas de Narcóticos/uso terapéutico , Fragmentos de Péptidos/antagonistas & inhibidores , Umbral Sensorial/efectos de los fármacos , Animales , Enfermedad Crónica , Maleato de Dizocilpina/uso terapéutico , Inyecciones Espinales , Masculino , Naloxona/uso terapéutico , Dolor/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
14.
Neuroscience ; 118(3): 755-62, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12710982

RESUMEN

Penile erection induced by alpha-melanocyte-stimulating hormone and melanocortin receptors (MC-R) in areas of the spinal cord and periphery has not been demonstrated. To elucidate sites of the proerectile action of melanocortin peptides, in awake male rats we administered the MC-R agonist Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH(2) (MT-II) i.c.v., intrathecal (i.th.) and i.v. and scored penile erection and yawning. Injection of the MC-R antagonist Ac-Nle-c[Asp-His-DNal(2')-Arg-Trp-Lys]-NH(2) (SHU-9119) i.c.v. or i.th. in combination with i.th. MT-II differentiated spinal from supraspinal effects. To exclude a site of action in the penis, we recorded intracavernous pressure responses to intracavernosal injection of MT-II in the anesthetized rat.I.c.v., i.th., and i.v. MT-II induced penile erections in a dose-dependent fashion. Yawning was observed with i.c.v. and i.v. MT-II, while spinal injection did not produce this behavior. Intrathecal delivery of MT-II to the lumbosacral spinal cord was more efficacious in inducing erections than i.c.v. or i.v. administration; SHU-9119 blocked the erectile responses to i.th. MT-II when injected i.th. but not i.c.v. Intracavernosal MT-II neither increased intracavernous pressure nor augmented neurostimulated erectile responses. We confirmed the central proerectile activity of MT-II and demonstrated that in addition to a site of action in the brain, the distal spinal cord contains melanocortin receptors that can initiate penile erection independent of higher centers. These results provide new insight into the central melanocortinergic pathways that mediate penile erection and may allow for more efficacious melanotropin-based therapy for erectile dysfunction.


Asunto(s)
Encéfalo/efectos de los fármacos , Vías Eferentes/efectos de los fármacos , Neuronas/efectos de los fármacos , Erección Peniana/efectos de los fármacos , Receptores de Corticotropina/metabolismo , Médula Espinal/efectos de los fármacos , alfa-MSH/metabolismo , Animales , Encéfalo/metabolismo , Vías Eferentes/metabolismo , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/metabolismo , Disfunción Eréctil/fisiopatología , Masculino , Neuronas/metabolismo , Oligopéptidos/farmacología , Erección Peniana/fisiología , Pene/inervación , Pene/fisiología , Ratas , Ratas Long-Evans , Receptores de Corticotropina/antagonistas & inhibidores , Receptores de Melanocortina , Médula Espinal/metabolismo , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
15.
Neuroscience ; 121(3): 815-24, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14568039

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) is necessary for the development of sensory neurons, and appears to be critical for the survival of dorsal root ganglion (DRG) cells that bind the lectin IB4. Intrathecal infusion of GDNF has been shown to prevent and reverse the behavioral expression of experimental neuropathic pain arising from injury to spinal nerves. This effect of GDNF has been attributed to a blockade of the expression of the voltage gated, tetrodotoxin-sensitive sodium channel subtype, Na(V)1.3, in the injured DRG. Here we report that GDNF given intrathecally via osmotic-pump to nerve-injured rats (L5/L6 spinal nerve ligation) prevented the changes in a variety of neurochemical markers in the DRG upon injury. They include a loss of binding of IB4, downregulation of the purinergic receptor P2X(3), upregulation of galanin and neuropeptide Y immunoreactivity in large diameter DRG cells, and expression of the transcription factor ATF3. GDNF infusion concomitantly prevented the development of spinal nerve ligation-induced tactile hypersensitivity and thermal hyperalgesia. These observations suggest that high dose, exogenous GDNF has a broad neuroprotective role in injured primary afferent. The receptor(s) that mediates these effects of GDNF is not known. GDNF's ability to block neuropathic pain states is not likely to be specific to Na(V)1.3 expression.


Asunto(s)
Ganglios Espinales/lesiones , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Dolor/metabolismo , Factores de Transcripción Activadores , Animales , Proteínas Sanguíneas/metabolismo , Modelos Animales de Enfermedad , Lateralidad Funcional , Galanina/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Factor Neurotrófico Derivado de la Línea Celular Glial , Humanos , Inmunohistoquímica , Lectinas/metabolismo , Masculino , Neuropéptido Y/metabolismo , Dolor/patología , Dolor/prevención & control , Umbral del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X3 , Factores de Tiempo , Factores de Transcripción/metabolismo
16.
Neuroreport ; 5(18): 2601-5, 1994 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-7696612

RESUMEN

Cholecystokinin (CCK) has been shown to attenuate, while CCK antagonists enhance, the antinociceptive activity of morphine, suggesting that this peptide may act as an endogenous modulator of the opioid system. Here, we have investigated the effects of administration of a synthetic oligodeoxynucleotide (oligo) complementary to the 5' coding region of the cloned mouse CCKB receptor (antisense), or a mismatch oligo, on the antinociceptive effects of morphine. Intracerebroventricular (i.c.v.) treatment of mice with CCKB antisense, but not mismatch, oligo for 3 days resulted in an enhancement of the antinociceptive potency of i.c.v. morphine, as indicated by an approximately 6-fold leftward shift of the dose-effect curve. The antinociceptive effects of morphine in control and CCKB antisense-treated animals were investigated in the presence or absence of naltrindole, an opioid delta receptor antagonist, as well as in the presence or absence of antisera directed against either [Leu5]- or [Met5]enkephalin. The enhanced potency of morphine in mice pretreated with CCKB antisense oligo was blocked by a delta-selective dose of naltrindole and antisera to [Leu5]enkephalin, but not [Met5]enkephalin; naltrindole, or antisera towards [Leu5]enkephalin or [Met5]enkephalin did not produce antinociceptive effects when given alone and did not alter the antinociceptive actions of morphine in control mice. These data suggest that CCK may act via CCKB receptors to tonically inhibit the release of [Leu5]enkephalin, or a [Leu5]enkephalin-like peptide. The enhancement of morphine antinociception seen in the presence of blockade of the CCKB receptor may be the result of the well-known enhancement of morphine antinociception by opioid delta agonists.


Asunto(s)
Encefalina Leucina/fisiología , Morfina/farmacología , Naltrexona/análogos & derivados , Nociceptores/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Receptores de Colecistoquinina/genética , Animales , Sinergismo Farmacológico , Encefalina Leucina/inmunología , Sueros Inmunes/inmunología , Masculino , Ratones , Ratones Endogámicos ICR , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología
17.
Neuroreport ; 7(2): 593-6, 1996 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-8730837

RESUMEN

Studies using agonists from at least three major cannabinoid ligand groups suggest the mediation of several distinct effects (e.g. psychotropic, analgesia, and antiemetic) by the recently cloned CB1 cannabinoid receptor. However, other studies suggest the presence of multiple cannabinoid receptors and at least one other receptor (CB2) has been cloned. The present investigation was undertaken to determine whether one of the potential therapeutic actions of cannabinoids (i.e. antinociception) is mediated by the CB1 receptor using the antisense oligodeoxynucleotide 'knock-down' approach. Synthetic oligodeoxynucleotides complementary to the 5' end of the coding region of the mouse CB1 receptor mRNA were administered to mice by the intracerebro-ventricular (i.c.v.) route twice daily for 3 days. Mismatch oligodeoxynucleotides of similar sequence, but containing six mismatched positions out of the 18 nucleotides within the oligodeoxynucleotide were administered to other mice. Treatment with antisense oligodeoxynucleotides, but not mismatched oligodeoxynucleotides, greatly inhibited the antinociceptive response of the cannabinoid agonist CP-55,940. Untreated mice and those treated with mismatched oligodeoxynucleotides showed similar, full response antinociception after CP-55,940 administration. The data provides strong evidence that the CB1 receptor-ligand interaction is essential for the antinociceptive effect.


Asunto(s)
Analgésicos/farmacología , Encéfalo/efectos de los fármacos , Ciclohexanoles/farmacología , Oligonucleótidos Antisentido/farmacología , Receptores de Droga/agonistas , Analgésicos/administración & dosificación , Animales , Secuencia de Bases , Ciclohexanoles/administración & dosificación , Ciclohexanoles/farmacocinética , Relación Dosis-Respuesta a Droga , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos ICR , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/síntesis química , Dimensión del Dolor/efectos de los fármacos , Receptores de Cannabinoides
18.
Eur J Pharmacol ; 339(2-3): 237-44, 1997 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-9473141

RESUMEN

Anesthetics (and ethanol) are known to produce amnesia as well as immobilization. Recent identification of a nonimmobilizing (nonanesthetic) agent (F6 or 1,2-dichlorohexafluorocyclobutane) that impairs learning and memory suggests that distinct mechanisms may be responsible for these two actions of anesthetic agents. Muscarinic receptors are believed to play a role in memory and learning, and we asked if a specific subtype of these receptors is affected by anesthetics as well as the new nonanesthetic. We investigated the effects of halothane, a novel halogenated anesthetic compound F3 (1-chloro-1,2,2-trifluorocyclobutane) and ethanol on acetylcholine-induced current mediated by a muscarinic m1 receptor expressed in Xenopus oocytes. We also studied the effects of halogenated nonanesthetic compounds, F6 and F8 (2,3-chlorooctafluorobutane) on muscarinic m1 receptors. Halothane, F3, F6 and ethanol inhibited muscarinic m1 receptor-induced Ca2+-dependent Cl- currents at pharmacologically relevant concentrations. F8 had no effect on acetylcholine-induced muscarinic m1 receptor function. The protein kinase C inhibitor, bisindolylmaleimide I (GF109203X), enhanced the acetylcholine-induced current and the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), inhibited this current. GF109203X abolished the inhibitory effects of halothane, F3 and ethanol on muscarinic m1 receptors but had no effect on actions of F6. These results demonstrate that anesthetics and a nonanesthetic inhibit the function of muscarinic m1 receptors and suggest activation of protein kinase C as the mechanism of action of anesthetics and ethanol on these receptors.


Asunto(s)
Anestésicos por Inhalación/farmacología , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Halotano/farmacología , Oocitos/efectos de los fármacos , Receptores Muscarínicos/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Indoles/farmacología , Maleimidas/farmacología , Oocitos/química , Proteína Quinasa C/antagonistas & inhibidores , Receptores Muscarínicos/metabolismo , Xenopus laevis
19.
Eur J Pharmacol ; 392(3): R9-R11, 2000 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-10762674

RESUMEN

We examined the role of the gamma(2) subunit of G proteins (Ggamma(2)) in the antinociception produced by c[D-Pen(2), D-Pen(5)]enkephalin (DPDPE) in mice. DPDPE produced 84.0+/-9.0% antinociception in vehicle-treated mice. After intracerebroventricular (i.c.v.) treatment with an antisense phosphorothioate oligodeoxynucleotide to the Ggamma(2) subunit, DPDPE-mediated antinociception decreased to 24.4+/-7.4%. The mismatch phosphorothioate oligodeoxynucleotide-treated mice showed 65.1+/-10.3% antinociception, while the missense phosphorothioate oligodeoxynucleotide-treated mice showed 76.4+/-23.6% antinociception by DPDPE. The reduction of analgesia in antisense phosphorothioate oligodeoxynucleotide-treated mice was significant in comparison with vehicle-treated (P<0.001), mismatch phosphorothioate oligodeoxynucleotide-treated (P<0.01) and missense phosphorothioate oligodeoxynucleotide-treated (P<0.05) mice. These results suggest that the G protein gamma(2) subunit is involved in the transduction pathway leading to antinociception by DPDPE.


Asunto(s)
Analgésicos Opioides/farmacología , Encefalina D-Penicilamina (2,5)/farmacología , Proteínas de Unión al GTP Heterotriméricas/fisiología , Nociceptores/efectos de los fármacos , Dolor/prevención & control , Análisis de Varianza , Animales , Proteínas de Unión al GTP Heterotriméricas/antagonistas & inhibidores , Proteínas de Unión al GTP Heterotriméricas/genética , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos ICR , Mutación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Dolor/fisiopatología , Dimensión del Dolor , Tionucleótidos/genética , Tionucleótidos/farmacología
20.
Eur J Pharmacol ; 388(3): 241-8, 2000 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-10675732

RESUMEN

We examined the effects of [D-Pen(2),D-Pen(5)]enkephalin (DPDPE), [D-Ala(2),Glu(4)]deltorphin (DELT), and (+)-4-[(alphaR)-alpha((2S, 5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N, N-diethylbenzamide (SNC80) on [35S]GTPgammaS binding in brain membranes prepared from micro-opioid receptor knockout (-/-) mice. The potency and maximal response (E(max)) of these agonists were unchanged compared to control mice. In contrast, while the potency of [D-Pen(2),pCl-Phe(4),D-Pen(5)]enkephalin (pCl-DPDPE) was not significantly different, the E(max) was reduced as compared to controls. In the tail-flick test, intracerebroventricular (i.c.v.) or intrathecal (i.th.) DELT produced antinociceptive effects in -/- mice with potency that did not differ significantly from controls. In contrast, the antinociceptive potency of i.c.v. and i.th. DPDPE was displaced to the right by 4- and 9-fold in -/- compared to control mice, respectively. Reduced DPDPE antinociceptive potency in -/- mice, taken together with reduced DPDPE- and pCl-DPDPE- stimulated G protein activity in membranes prepared from -/- mice, demonstrate that these agonists require mu-opioid receptors for full activity. However, because DELT mediated G protein activation and antinociception were both comparable between -/- and wild type mice, we conclude that the mu-opioid receptor is not a critical component of delta-opioid receptor function.


Asunto(s)
Analgésicos Opioides/farmacología , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides mu/genética , Animales , Benzamidas/farmacología , Encéfalo/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Encefalina D-Penicilamina (2,5)/farmacología , Encefalinas/farmacología , Técnicas In Vitro , Membranas , Ratones , Ratones Noqueados , Oligopéptidos/farmacología , Dimensión del Dolor , Piperazinas/farmacología , Unión Proteica , Ensayo de Unión Radioligante , Receptores Opioides delta/metabolismo , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA