Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Genet ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056288

RESUMEN

Recognizing Mendelian causes is crucial in molecular diagnostics and counseling for patients with autism spectrum disorder (ASD). We explored facial dysmorphism and facial asymmetry in relation to genetic causes in ASD patients and studied the potential of objective facial phenotyping in discriminating between Mendelian and multifactorial ASD. In a cohort of 152 ASD patients, 3D facial images were used to calculate three metrics: a computational dysmorphism score, a computational asymmetry score, and an expert dysmorphism score. High scores for each of the three metrics were associated with Mendelian causes of ASD. The computational dysmorphism score showed a significant correlation with the average expert dysmorphism score. However, in some patients, different dysmorphism aspects were captured making the metrics potentially complementary. The computational dysmorphism and asymmetry scores both enhanced the individual expert dysmorphism scores in differentiating Mendelian from non-Mendelian cases. Furthermore, the computational asymmetry score enhanced the average expert opinion in predicting a Mendelian cause. By design, our study does not allow to draw conclusions on the actual point-of-care use of 3D facial analysis. Nevertheless, 3D morphometric analysis is promising for developing clinical dysmorphology applications in diagnostics and training.

2.
J Med Genet ; 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858754

RESUMEN

BACKGROUND: In clinical genetics, establishing an accurate nosology requires analysis of variations in both aetiology and the resulting phenotypes. At the phenotypic level, recognising typical facial gestalts has long supported clinical and molecular diagnosis; however, the objective analysis of facial phenotypic variation remains underdeveloped. In this work, we propose exploratory strategies for assessing facial phenotypic variation within and among clinical and molecular disease entities and deploy these techniques on cross-sectional samples of four RASopathies: Costello syndrome (CS), Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC) and neurofibromatosis type 1 (NF1). METHODS: From three-dimensional dense surface scans, we model the typical phenotypes of the four RASopathies as average 'facial signatures' and assess individual variation in terms of direction (what parts of the face are affected and in what ways) and severity of the facial effects. We also derive a metric of phenotypic agreement between the syndromes and a metric of differences in severity along similar phenotypes. RESULTS: CFC shows a relatively consistent facial phenotype in terms of both direction and severity that is similar to CS and NS, consistent with the known difficulty in discriminating CFC from NS based on the face. CS shows a consistent directional phenotype that varies in severity. Although NF1 is highly variable, on average, it shows a similar phenotype to CS. CONCLUSIONS: We established an approach that can be used in the future to quantify variations in facial phenotypes between and within clinical and molecular diagnoses to objectively define and support clinical nosologies.

3.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38895298

RESUMEN

Human facial shape, while strongly heritable, involves both genetic and structural complexity, necessitating precise phenotyping for accurate assessment. Common phenotyping strategies include simplifying 3D facial features into univariate traits such as anthropometric measurements (e.g., inter-landmark distances), unsupervised dimensionality reductions (e.g., principal component analysis (PCA) and auto-encoder (AE) approaches), and assessing resemblance to particular facial gestalts (e.g., syndromic facial archetypes). This study provides a comparative assessment of these strategies in genome-wide association studies (GWASs) of 3D facial shape. Specifically, we investigated inter-landmark distances, PCA and AE-derived latent dimensions, and facial resemblance to random, extreme, and syndromic gestalts within a GWAS of 8,426 individuals of recent European ancestry. Inter-landmark distances exhibit the highest SNP-based heritability as estimated via LD score regression, followed by AE dimensions. Conversely, resemblance scores to extreme and syndromic facial gestalts display the lowest heritability, in line with expectations. Notably, the aggregation of multiple GWASs on facial resemblance to random gestalts reveals the highest number of independent genetic loci. This novel, easy-to-implement phenotyping approach holds significant promise for capturing genetically relevant morphological traits derived from complex biomedical imaging datasets, and its applications extend beyond faces. Nevertheless, these different phenotyping strategies capture different genetic influences on craniofacial shape. Thus, it remains valuable to explore these strategies individually and in combination to gain a more comprehensive understanding of the genetic factors underlying craniofacial shape and related traits. Author Summary: Advancements linking variation in the human genome to phenotypes have rapidly evolved in recent decades and have revealed that most human traits are influenced by genetic variants to at least some degree. While many traits, such as stature, are straightforward to acquire and investigate, the multivariate and multipartite nature of facial shape makes quantification more challenging. In this study, we compared the impact of different facial phenotyping approaches on gene mapping outcomes. Our findings suggest that the choice of facial phenotyping method has an impact on apparent trait heritability and the ability to detect genetic association signals. These results offer valuable insights into the importance of phenotyping in genetic investigations, especially when dealing with highly complex morphological traits.

4.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106188

RESUMEN

Human craniofacial shape is highly variable yet highly heritable with genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the normal population. We compared three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores. Multivariate GWAS of the control scores revealed a polygenic basis for normal facial variation along an achondroplasia-specific shape axis, identifying genes primarily involved in skeletal development. Jointly modeling these genes in two independent control samples showed craniofacial effects approximating the characteristic achondroplasia phenotype. These findings suggest that both complex and Mendelian genetic variation act on the same developmentally determined axes of facial variation, providing new insights into the genetic intersection of complex traits and Mendelian disorders.

5.
NPJ Genom Med ; 6(1): 81, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620870

RESUMEN

Chromosome instability is inherent to human IVF embryos, but the full spectrum and developmental fate of chromosome anomalies remain uncharacterized. Using haplotyping-based preimplantation genetic testing for monogenic diseases (PGT-M), we mapped the parental and mechanistic origin of common and rare genomic abnormalities in 2300 cleavage stage and 361 trophectoderm biopsies. We show that while single whole chromosome aneuploidy arises due to chromosome-specific meiotic errors in the oocyte, segmental imbalances predominantly affect paternal chromosomes, implicating sperm DNA damage in segmental aneuploidy formation. We also show that postzygotic aneuploidy affects multiple chromosomes across the genome and does not discriminate between parental homologs. In addition, 6% of cleavage stage embryos demonstrated signatures of tripolar cell division with excessive chromosome loss, however hypodiploid blastomeres can be excluded from further embryo development. This observation supports the selective-pressure hypothesis in embryos. Finally, considering that ploidy violations may constitute a significant proportion of non-viable embryos, using haplotyping-based approach to map these events might further improve IVF success rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA