Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Genet ; 20(4): e1011234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598601

RESUMEN

Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulators in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium identified hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote EP activation. Our data thus reveal a more complex role of DacA1 in maintaining PG homeostasis than previously assumed.


Asunto(s)
Carboxipeptidasas , Pared Celular , Endopeptidasas , Peptidoglicano , Vibrio cholerae , Peptidoglicano/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Epistasis Genética , Mutación
2.
Cerebellum ; 23(4): 1727-1732, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38180701

RESUMEN

Spinocerebellar ataxia 19 (SCA19) represents a rare autosomal dominant genetic disorder resulting in progressive ataxia and cerebellar atrophy. SCA19 is caused by variants in the KCND3 gene, which encodes a voltage-gated potassium channel subunit essential for cerebellar Purkinje cell function. We describe six cases from Chile and Mexico, representing the largest report on SCA19 in Latin America. These cases encompass a range of clinical presentations, highlighting the phenotypic variability within SCA19 from an early-onset, severe disease to a late-onset, slowly progressive condition with normal lifespan. While some patients present with pure ataxia, others also show cognitive impairment, dystonia, and other neurological symptoms. The correlations between specific KCND3 variants and phenotypic outcomes are complex and warrant further investigation. As the genomic landscape of spinocerebellar ataxias evolves, comprehensive genetic testing is becoming pivotal in improving diagnostic accuracy. This study contributes to a better understanding of the clinical spectrum of SCA19, laying the groundwork for further genotype-phenotype correlations and functional studies to elucidate the underlying pathophysiology.


Asunto(s)
Fenotipo , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , México/epidemiología , Chile/epidemiología , Anciano , Degeneraciones Espinocerebelosas/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/epidemiología
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732154

RESUMEN

The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with CVD. In this research, 20 individuals with heart failure and 26 participants subjected to cardiac stress tests were enrolled. The associations between hERG1 and/or Hsp47 in sEVs and CVD were established using Western blot, flow cytometry, electron microscopy, ELISA, and nanoparticle tracking analysis. The results show that hERG1 and Hsp47 were present in sEV membranes, extravesicularly exposing the sequences 430AFLLKETEEGPPATE445 for hERG1 and 169ALQSINEWAAQTT- DGKLPEVTKDVERTD196 for Hsp47. In addition, upon exposure to hypoxia, rat primary cardiomyocytes released sEVs into the media, and human cardiomyocytes in culture also released sEVs containing hERG1 (EV-hERG1) and/or Hsp47 (EV-Hsp47). Moreover, the levels of sEVs increased in the blood when cardiac ischemia was induced during the stress test, as well as the concentrations of EV-hERG1 and EV-Hsp47. Additionally, the plasma levels of EV-hERG1 and EV-Hsp47 decreased in patients with decompensated heart failure (DHF). Our data provide the first evidence that hERG1 and Hsp47 are present in the membranes of sEVs derived from the human cardiomyocyte cell line, and also in those isolated from human peripheral blood. Total sEVs, EV-hERG1, and EV-Hsp47 may be explored as biomarkers for heart diseases such as heart failure and cardiac ischemia.


Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , Vesículas Extracelulares , Proteínas del Choque Térmico HSP47 , Miocitos Cardíacos , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/sangre , Masculino , Enfermedades Cardiovasculares/metabolismo , Femenino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Persona de Mediana Edad , Animales , Proteínas del Choque Térmico HSP47/metabolismo , Ratas , Canal de Potasio ERG1/metabolismo , Anciano , Adulto , Canales de Potasio Éter-A-Go-Go/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/sangre
5.
Biol Res ; 56(1): 8, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869357

RESUMEN

BACKGROUND: Sepsis is an uncontrolled inflammatory response against a systemic infection that results in elevated mortality, mainly induced by bacterial products known as endotoxins, producing endotoxemia. Disseminated intravascular coagulation (DIC) is frequently observed in septic patients and is associated with organ failure and death. Sepsis activates endothelial cells (ECs), promoting a prothrombotic phenotype contributing to DIC. Ion channel-mediated calcium permeability participates in coagulation. The transient reception potential melastatin 7 (TRPM7) non-selective divalent cation channel that also contains an α-kinase domain, which is permeable to divalent cations including Ca2+, regulates endotoxin-stimulated calcium permeability in ECs and is associated with increased mortality in septic patients. However, whether endothelial TRPM7 mediates endotoxemia-induced coagulation is not known. Therefore, our aim was to examine if TRPM7 mediates coagulation during endotoxemia. RESULTS: The results showed that TRPM7 regulated endotoxin-induced platelet and neutrophil adhesion to ECs, dependent on the TRPM7 ion channel activity and by the α-kinase function. Endotoxic animals showed that TRPM7 mediated neutrophil rolling on blood vessels and intravascular coagulation. TRPM7 mediated the increased expression of the adhesion proteins, von Willebrand factor (vWF), intercellular adhesion molecule 1 (ICAM-1), and P-selectin, which were also mediated by the TRPM7 α-kinase function. Notably, endotoxin-induced expression of vWF, ICAM-1 and P-selectin were required for endotoxin-induced platelet and neutrophil adhesion to ECs. Endotoxemic rats showed increased endothelial TRPM7 expression associated with a procoagulant phenotype, liver and kidney dysfunction, increased death events and an increased relative risk of death. Interestingly, circulating ECs (CECs) from septic shock patients (SSPs) showed increased TRPM7 expression associated with increased DIC scores and decreased survival times. Additionally, SSPs with a high expression of TRPM7 in CECs showed increased mortality and relative risk of death. Notably, CECs from SSPs showed significant results from the AUROC analyses for predicting mortality in SSPs that were better than the Acute Physiology and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) scores. CONCLUSIONS: Our study demonstrates that sepsis-induced DIC is mediated by TRPM7 in ECs. TRPM7 ion channel activity and α-kinase function are required by DIC-mediated sepsis-induced organ dysfunction and its expression are associated with increased mortality during sepsis. TRPM7 appears as a new prognostic biomarker to predict mortality associated to DIC in SSPs, and as a novel target for drug development against DIC during infectious inflammatory diseases.


Asunto(s)
Coagulación Intravascular Diseminada , Endotoxemia , Sepsis , Canales Catiónicos TRPM , Animales , Ratas , Molécula 1 de Adhesión Intercelular , Selectina-P , Células Endoteliales , Calcio , Factor de von Willebrand , Endotoxinas
6.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298622

RESUMEN

Aeromonas salmonicida subsp. salmonicida (A. salmonicida), a Gram-negative bacterium causing furunculosis in fish, produces the siderophores acinetobactin and amonabactins in order to extract iron from its hosts. While the synthesis and transport of both systems is well understood, the regulation pathways and conditions necessary for the production of each one of these siderophores are not clear. The acinetobactin gene cluster carries a gene (asbI) encoding a putative sigma factor belonging to group 4 σ factors, or, the ExtraCytoplasmic Function (ECF) group. By generating a null asbI mutant, we demonstrate that AsbI is a key regulator that controls acinetobactin acquisition in A. salmonicida, since it directly regulates the expression of the outer membrane transporter gene and other genes necessary for Fe-acinetobactin transport. Furthermore, AsbI regulatory functions are interconnected with other iron-dependent regulators, such as the Fur protein, as well as with other sigma factors in a complex regulatory network.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Animales , Sideróforos/metabolismo , Aeromonas salmonicida/genética , Factor sigma/genética , Factor sigma/metabolismo , Hierro/metabolismo , Aeromonas/metabolismo
7.
FASEB J ; 34(6): 7847-7865, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32301552

RESUMEN

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+ -activated nonselective cationic channel that regulates cell migration and contractility. Increased TRPM4 expression has been related to pathologies, in which cytoskeletal rearrangement and cell migration are altered, such as metastatic cancer. Here, we identify the K+ channel tetramerization domain 5 (KCTD5) protein, a putative adaptor of cullin3 E3 ubiquitin ligase, as a novel TRPM4-interacting protein. We demonstrate that KCTD5 is a positive regulator of TRPM4 activity by enhancing its Ca2+ sensitivity. We show that through its effects on TRPM4 that KCTD5 promotes cell migration and contractility. Finally, we observed that both TRPM4 and KCTD5 expression are increased in distinct patterns in different classes of breast cancer tumor samples. Together, these data support that TRPM4 activity can be regulated through expression levels of either TRPM4 or KCTD5, not only contributing to increased understanding of the molecular mechanisms involved on the regulation of these important ion channels, but also providing information that could inform treatments based on targeting these distinct molecules that define TRPM4 activity.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Movimiento Celular/fisiología , Canales de Potasio/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Mama/metabolismo , Mama/patología , Células COS , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Femenino , Células HEK293 , Humanos , Células MCF-7 , Pronóstico , Ubiquitina-Proteína Ligasas/metabolismo
8.
Lab Invest ; 100(5): 789, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31942005

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Lab Invest ; 100(2): 234-249, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31444399

RESUMEN

Sepsis is the main cause of mortality in patients admitted to intensive care units. During sepsis, endothelial permeability is severely augmented, contributing to renal dysfunction and patient mortality. Ca2+ influx and the subsequent increase in intracellular [Ca2+]i in endothelial cells (ECs) are key steps in the establishment of endothelial hyperpermeability. Transient receptor potential melastatin 7 (TRPM7) ion channels are permeable to Ca2+ and are expressed in a broad range of cell types and tissues, including ECs and kidneys. However, the role of TRPM7 on endothelial hyperpermeability during sepsis has remained elusive. Therefore, we investigated the participation of TRPM7 in renal vascular hyperpermeability, renal dysfunction, and enhanced mortality induced by endotoxemia. Our results showed that endotoxin increases endothelial hyperpermeability and Ca2+ overload through the TLR4/NOX-2/ROS/NF-κB pathway. Moreover, endotoxin exposure was shown to downregulate the expression of VE-cadherin, compromising monolayer integrity and enhancing vascular hyperpermeability. Notably, endotoxin-induced endothelial hyperpermeability was substantially inhibited by pharmacological inhibition and specific suppression of TRPM7 expression. The endotoxin was shown to upregulate the expression of TRPM7 via the TLR4/NOX-2/ROS/NF-κB pathway and induce a TRPM7-dependent EC Ca2+ overload. Remarkably, in vivo experiments performed in endotoxemic animals showed that pharmacological inhibition and specific suppression of TRPM7 expression inhibits renal vascular hyperpermeability, prevents kidney dysfunction, and improves survival in endotoxemic animals. Therefore, our results showed that TRPM7 mediates endotoxemia-induced endothelial hyperpermeability, renal dysfunction, and enhanced mortality, revealing a novel molecular target for treating renal vascular hyperpermeability and kidney dysfunction during endotoxemia, sepsis, and other inflammatory diseases.


Asunto(s)
Permeabilidad Capilar/fisiología , Endotelio Vascular/metabolismo , Endotoxemia , Enfermedades Renales/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Línea Celular , Endotelio Vascular/fisiopatología , Endotoxemia/metabolismo , Endotoxemia/mortalidad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Riñón/metabolismo , Riñón/fisiopatología , Enfermedades Renales/fisiopatología , Masculino , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Canales Catiónicos TRPM/genética
10.
FASEB J ; 33(8): 9434-9452, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31112396

RESUMEN

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective cationic channel involved in a wide variety of physiologic and pathophysiological processes. Bioinformatics analyses of the primary sequence of TRPM4 allowed us to identify a putative motif for interaction with end-binding (EB) proteins, which are microtubule plus-end tracking proteins. Here, we provide novel data suggesting that TRPM4 interacts with EB proteins. We show that mutations of the putative EB binding motif abolish the TRPM4-EB interaction, leading to a reduced expression of the mature population of the plasma membrane channel and instead display an endoplasmic reticulum-associated distribution. Furthermore, we demonstrate that EB1 and EB2 proteins are required for TRPM4 trafficking and functional activity. Finally, we demonstrated that the expression of a soluble fragment containing the EB binding motif of TRPM4 reduces the plasma membrane expression of the channel and affects TRPM4-dependent focal adhesion disassembly and cell invasion processes.-Blanco, C., Morales, D., Mogollones, I., Vergara-Jaque, A., Vargas, C., Álvarez, A., Riquelme, D., Leiva-Salcedo, E., González, W., Morales, D., Maureira, D., Aldunate, I., Cáceres, M., Varela, D., Cerda, O. EB1- and EB2-dependent anterograde trafficking of TRPM4 regulates focal adhesion turnover and cell invasion.


Asunto(s)
Adhesiones Focales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Biotinilación/fisiología , Células COS , Adhesión Celular/genética , Adhesión Celular/fisiología , Línea Celular , Movimiento Celular/genética , Movimiento Celular/fisiología , Chlorocebus aethiops , Electrofisiología , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Proteínas Asociadas a Microtúbulos/genética , Simulación de Dinámica Molecular , Mutación/genética , Plásmidos/genética , Canales Catiónicos TRPM/genética
11.
Lab Invest ; 99(3): 421-437, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30664710

RESUMEN

Systemic inflammatory diseases enhance circulating oxidative stress levels, which results in the oxidation of circulating high-density lipoprotein (oxHDL). Endothelial cell function can be negatively impacted by oxHDL, but the underlying mechanisms for this remain unclear. Some reports indicate that the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is also a receptor for oxHDL. However, it is unknown if oxHDL induces increased LOX-1 expression at the plasma membrane, as an event that supports endothelial dysfunction. Therefore, the aims of this study were to determine if oxHDL induces plasma-membrane level changes in LOX-1 and, if so, to describe the underlying mechanisms in endothelial cells. Our results demonstrate that the incubation of arterial or vein endothelial cells with oxHDL (and not HDL) induces the increase of LOX-1 expression at the plasma membrane; effect prevented by LOX-1 inhibition. Importantly, same results were observed in endothelial cells from oxHDL-treated rats. Furthermore, the observed oxHDL-induced LOX-1 expression is abolished by the down-regulation of NOX-2 expression with siRNA (and no others NOX isoforms), by the pharmacological inhibition of NAD(P)H oxidase (with DPI or apocynin) or by the inhibition of NF-κB transcription factor. Coherently, LOX-1 expression is augmented by the incubation of endothelial cells with H2O2 or GSSG even in absence of oxHDL, indicating that the NOX-2/ROS/ NF-κB axis is involved. Interestingly, oxHDL incubation also increases TNF-α expression, cytokine that induces LOX-1 expression. Thus, our results suggest a positive feedback mechanism for LOX-1 receptor during inflammatory condition where an oxidative burst will generate oxHDL from native HDL, activating LOX-1 receptor which in turn will increase the expression of NOX-2, TNF-α and LOX-1 receptor at the plasma membrane. In conclusion, oxHDL-induced translocation of LOX-1 to the plasma membrane could constitute an induction mechanism of endothelial dysfunction in systemic inflammatory diseases.


Asunto(s)
Células Endoteliales/metabolismo , Lipoproteínas HDL/metabolismo , Receptores Depuradores de Clase E/metabolismo , Animales , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/metabolismo , Masculino , NADPH Oxidasa 2/metabolismo , FN-kappa B/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
12.
Fish Shellfish Immunol ; 94: 723-729, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31580933

RESUMEN

Photobacteriosis caused by Photobacterium damselae subsp. piscicida (Pdp) remains one of the main infectious diseases affecting cultured fish in Mediterranean countries. Diverse vaccine formulations based in the use of inactivated bacterial cells have been used with unsatisfactory results, especially in newly cultured species like sole (Solea senegalensis). In this work, we describe the use of the outer membrane receptor (FrpA) of the siderophore piscibactin produced by Pdp as a novel subunit vaccine against photobacteriosis. FrpA has been cloned and expressed in Escherichia coli under an arabinose-inducible promoter. A recombinant protein (rFrpA) containing the pelB localization signal and a His tag was constructed to obtain a pure native form of the protein from E. coli outer membranes. The immunogenicity of rFrpA, and its protective effect against photobacteriosis, was tested by i.p. injection of 30  µg of the protein, mixed with Freund's adjuvant, in sole fingerlings with two immunizations separated by 30 days. Results showed that using either pure rFrpA or whole cells as immobilized antigens in ELISA assays, rFrpA induces the production of specific antibodies in sole. An experimental infection using fish vaccinated with rFrpA or formalin-killed whole cells of Pdp showed that both groups were protected against Pdp infection at similar levels, with no significant differences, reaching RPS values of 73% and 79%, respectively. Thus, FrpA constitutes a promising antigen candidate for the development of novel more effective vaccines against fish photobacteriosis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/administración & dosificación , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Photobacterium/inmunología , Animales , Peces Planos , Infecciones por Bacterias Gramnegativas/prevención & control , Receptores de Superficie Celular/inmunología , Vacunas de Subunidad/administración & dosificación
14.
Ecology ; 98(11): 2979, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28857166

RESUMEN

Our understanding of mammal ecology has always been hindered by the difficulties of observing species in closed tropical forests. Camera trapping has become a major advance for monitoring terrestrial mammals in biodiversity rich ecosystems. Here we compiled one of the largest datasets of inventories of terrestrial mammal communities for the Neotropical region based on camera trapping studies. The dataset comprises 170 surveys of medium to large terrestrial mammals using camera traps conducted in 144 areas by 74 studies, covering six vegetation types of tropical and subtropical Atlantic Forest of South America (Brazil and Argentina), and present data on species composition and richness. The complete dataset comprises 53,438 independent records of 83 species of mammals, includes 10 species of marsupials, 15 rodents, 20 carnivores, eight ungulates and six armadillos. Species richness averaged 13 species (±6.07 SD) per site. Only six species occurred in more than 50% of the sites: the domestic dog Canis familiaris, crab-eating fox Cerdocyon thous, tayra Eira barbara, south American coati Nasua nasua, crab-eating raccoon Procyon cancrivorus and the nine-banded armadillo Dasypus novemcinctus. The information contained in this dataset can be used to understand macroecological patterns of biodiversity, community, and population structure, but also to evaluate the ecological consequences of fragmentation, defaunation, and trophic interactions.


Asunto(s)
Biodiversidad , Bosques , Mamíferos/fisiología , Animales , Argentina , Brasil , Perros , Ecosistema
15.
Salud Publica Mex ; 58(3): 371-7, 2016 Jun.
Artículo en Español | MEDLINE | ID: mdl-27598935

RESUMEN

OBJECTIVE: To determine the serotype and antibiotic resistance profile of Salmonella spp. isolated from retail ground beef in Mexico City. MATERIALS AND METHODS: A total of 100 samples of ground beef were analyzed. The pathogen was isolated by conventional methods and confirmed by PCR (invA gene, 284 bp).The antibiotic resistance profile was determined by the Kirby-Bauer method while serotyping was performed according to the Kauffman-White scheme. RESULTS: We isolated a total of 19 strains of Lomita (6), Derby (4), Senftenberg (2), Javiana and Cannsttat (1) and undetermined (5) serotypes. The strains showed a high resistance rate to ampicillin (18/19), carbenicillin (16/19), tetracyclin (13/19), and trimethoprim-sulfamethoxazole (13/19). Multidrug resistance was observed in 14 isolates. CONCLUSIONS: Several Salmonella spp. serotypes of public health significance are circulating in ground beef sold in the major Mexican city. Some of these strains are multi-drug resistance.


Asunto(s)
Farmacorresistencia Microbiana , Microbiología de Alimentos , Carne Roja/microbiología , Salmonella/efectos de los fármacos , Animales , Bovinos , Humanos , Productos de la Carne/microbiología , México , Salmonella/clasificación , Salmonella/aislamiento & purificación , Intoxicación Alimentaria por Salmonella , Serotipificación , Salud Urbana
16.
J Biol Chem ; 289(24): 16675-87, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24808184

RESUMEN

The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief.


Asunto(s)
Hiperalgesia/metabolismo , Multimerización de Proteína , Canales Catiónicos TRPV/metabolismo , Secuencias de Aminoácidos , Animales , Artritis Experimental/metabolismo , Artritis Experimental/fisiopatología , Sitios de Unión , Eliminación de Gen , Células HEK293 , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Ratas , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética
17.
Pflugers Arch ; 467(12): 2473-84, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26265381

RESUMEN

In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVß2. To date, five distinct CaVß2 transcriptional start site (TSS) variants (CaVß2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca(2+) handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVß2 TSS variants on endogenous L-type current and Ca(2+) handling was explored by adenoviral-mediated overexpression of each CaVß2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVß2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVß2a and smaller in CaVß2d. Interestingly, the contribution of Ca(2+) influx and Ca(2+) release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVß2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVß2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Miocitos Cardíacos/metabolismo , Sitio de Iniciación de la Transcripción , Potenciales de Acción , Animales , Canales de Calcio Tipo L/genética , Células Cultivadas , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/crecimiento & desarrollo , Miocitos Cardíacos/fisiología , Ratas
18.
Pflugers Arch ; 467(8): 1723-1732, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25231975

RESUMEN

Transient receptor potential melastatin-like 4 (TRPM4) is a Ca(2+)-activated non-selective cation channel expressed in a wide range of human tissues. TRPM4 participates in a variety of physiological processes such as T cell activation, myogenic vasoconstriction, and allergic reactions. TRPM4 Ca(2+) sensitivity is enhanced by calmodulin (CaM) and phosphathydilinositol 4, 5-bisphosphate (PI(4,5)P2) binding, as well as, under certain conditions, PKC activation. However, information as to the mechanisms of modulation of this channel remains unknown, including direct identification of phosphorylation sites on TRPM4 and their role in channel features. Here, we use mass-spectrometric-based proteomic approaches (immunoprecipitation and tandem mass spectrometry) to unambiguously identify S839 as a phosphorylation site present on human TRPM4 expressed in a human cell line. Site-directed mutagenesis employing a serine to alanine mutation to eliminate phosphorylation, and a phospho-mimetic aspartate mutation, as well as biochemical and immunocytochemical experiments, revealed a role for S839 phosphorylation in the basolateral expression of TRPM4 channels in epithelial cells. Moreover, we demonstrated that casein kinase 1 (CK1) phosphorylates S839 and is responsible for the basolateral localization of TRPM4.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Canales Catiónicos TRPM/metabolismo , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Células HEK293 , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación , Transporte de Proteínas , Proteómica/métodos , Serina , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genética , Espectrometría de Masas en Tándem , Transfección
19.
Microvasc Res ; 98: 187-96, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24518820

RESUMEN

A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases.


Asunto(s)
Células Endoteliales/citología , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/metabolismo , Adhesión Celular , Movimiento Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/química , Inflamación/metabolismo , Estrés Oxidativo , ARN Interferente Pequeño/metabolismo
20.
Channels (Austin) ; 18(1): 2338782, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38691022

RESUMEN

L-type calcium channels are essential for the excitation-contraction coupling in cardiac muscle. The CaV1.2 channel is the most predominant isoform in the ventricle which consists of a multi-subunit membrane complex that includes the CaV1.2 pore-forming subunit and auxiliary subunits like CaVα2δ and CaVß2b. The CaV1.2 channel's C-terminus undergoes proteolytic cleavage, and the distal C-terminal domain (DCtermD) associates with the channel core through two domains known as proximal and distal C-terminal regulatory domain (PCRD and DCRD, respectively). The interaction between the DCtermD and the remaining C-terminus reduces the channel activity and modifies voltage- and calcium-dependent inactivation mechanisms, leading to an autoinhibitory effect. In this study, we investigate how the interaction between DCRD and PCRD affects the inactivation processes and CaV1.2 activity. We expressed a 14-amino acid peptide miming the DCRD-PCRD interaction sequence in both heterologous systems and cardiomyocytes. Our results show that overexpression of this small peptide can displace the DCtermD and replicate the effects of the entire DCtermD on voltage-dependent inactivation and channel inhibition. However, the effect on calcium-dependent inactivation requires the full DCtermD and is prevented by overexpression of calmodulin. In conclusion, our results suggest that the interaction between DCRD and PCRD is sufficient to bring about the current inhibition and alter the voltage-dependent inactivation, possibly in an allosteric manner. Additionally, our data suggest that the DCtermD competitively modifies the calcium-dependent mechanism. The identified peptide sequence provides a valuable tool for further dissecting the molecular mechanisms that regulate L-type calcium channels' basal activity in cardiomyocytes.


Asunto(s)
Canales de Calcio Tipo L , Miocitos Cardíacos , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/química , Animales , Miocitos Cardíacos/metabolismo , Humanos , Células HEK293 , Ratas , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA