Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 94(21): 7619-7627, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35584293

RESUMEN

The COVID-19 pandemic has revealed how an emerging pathogen can cause a sudden and dramatic increase in demand for viral testing. Testing pooled samples could meet this demand; however, the sensitivity of reverse transcription quantitative polymerase chain reaction (RT-qPCR), the gold standard, significantly decreases with an increasing number of samples pooled. Here, we introduce detection of intact virus by exogenous-nucleotide reaction (DIVER), a method that quantifies intact virus and is robust to sample dilution. As demonstrated using two models of severe acute respiratory syndrome coronavirus 2, DIVER first tags membraned particles with exogenous oligonucleotides, then captures the tagged particles on beads functionalized with a virus-specific capture agent (in this instance, angiotensin-converting enzyme 2), and finally quantifies the oligonucleotide tags using qPCR. Using spike-presenting liposomes and spike-pseudotyped lentivirus, we show that DIVER can detect 1 × 105 liposomes and 100 plaque-forming units of lentivirus and can successfully identify positive samples in pooling experiments. Overall, DIVER is well positioned for efficient sample pooling and clinical validation.


Asunto(s)
COVID-19 , Pandemias , COVID-19/diagnóstico , Humanos , Liposomas , Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Sensibilidad y Especificidad
2.
bioRxiv ; 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36482965

RESUMEN

Endoplasmic reticulum (ER) aminopeptidase associated with antigen processing (ERAAP) trims peptide precursors in the ER for presentation by major histocompatibility (MHC)-I molecules to surveying CD8+ T-cells. This function allows ERAAP to regulate the nature and quality of the peptide repertoire and, accordingly, the resulting immune responses. We recently showed that infection with murine cytomegalovirus leads to a dramatic loss of ERAAP levels in infected cells. In mice, this loss is associated with the activation of QFL T-cells, a subset of T-cells that monitor ERAAP integrity and eliminate cells experiencing ERAAP dysfunction. In this study, we aimed to identify host factors that regulate ERAAP expression level and determine whether these could be manipulated during viral infections. We performed a CRISPR knockout screen and identified ERp44 as a factor promoting ERAAP retention in the ER. ERp44's interaction with ERAAP is dependent on the pH gradient between the ER and Golgi. We hypothesized that viruses that disrupt the pH of the secretory pathway interfere with ERAAP retention. Here, we demonstrate that expression of the Envelope (E) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to Golgi pH neutralization and consequently decrease of ERAAP intracellular levels. Furthermore, SARS-CoV-2-induced ERAAP loss correlates with its release into the extracellular environment. ERAAP's reliance on ERp44 and a functioning ER/Golgi pH gradient for proper localization and function led us to propose that ERAAP serves as a sensor of disturbances in the secretory pathway during infection and disease.

3.
medRxiv ; 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33791715

RESUMEN

The persistence of the COVID-19 pandemic demands a dramatic increase in testing efficiency. Testing pooled samples for SARS-CoV-2 could meet this need; however, the sensitivity of RT-qPCR, the gold standard, significantly decreases with an increasing number of samples pooled. Here, we introduce DIVER, a method that quantifies intact virus and is robust to sample dilution. DIVER first tags viral particles with exogeneous oligonucleotides, then captures the tagged particles on ACE2-functionalized beads, and finally quantifies the oligonucleotide tags using qPCR. Using spike-presenting liposomes and Spike-pseudotyped lentivirus as SARS-CoV-2 models, we show that DIVER can detect 1×10 5 liposomes and 100 pfu lentivirus and can successfully identify positive samples in pooling experiments. Overall, DIVER is well-positioned for efficient sample pooling and expanded community surveillance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA