RESUMEN
TORC1 is a critical controller of cell growth in eukaryotes. In yeast (Saccharomyces cerevisiae), the presence of nutrients is signaled to TORC1 by several upstream regulatory sensors that together coordinate TORC1 activity. TORC1 localizes to both vacuolar and endosomal membranes, where differential signaling occurs. This localization is mimicked by Pib2, a key upstream TORC1 regulator that is essential for TORC1 reactivation after nutrient starvation or pharmacological inhibition. Pib2 has both positive and negative effects on TORC1 activity, but the mechanisms remain poorly understood. Here, we pinpoint the Pib2 inhibitory function on TORC1 to residues within short, conserved N-terminal regions. We also show that the Pib2 C-terminal regions, helical region E and tail, are essential for TORC1 reactivation. Furthermore, the Pib2 FYVE domain plays a role in vacuolar localization, but it is surprisingly unnecessary for recovery from rapamycin exposure. Using chimeric Pib2 targeting constructs, we show that endosomal localization is not necessary for TORC1 reactivation and cell growth after rapamycin treatment. Thus, a comprehensive molecular dissection of Pib2 demonstrates that each of its conserved regions differentially contribute to Pib2-mediated regulation of TORC1 activity.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vacuolas , Proteínas Reguladoras de la Apoptosis/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Vacuolas/metabolismoRESUMEN
The highly conserved TORC1 complex controls cell growth in response to nutrients, especially amino acids. The EGO complex activates TORC1 in response to glutamine and leucine. Here, we demonstrate that the I-BAR domain-containing protein Ivy1 colocalizes with Gtr1 and Gtr2, a heterodimer of small GTPases that are part of the EGO complex. Ivy1 is a negative regulator of Gtr-induced TORC1 activation, and is contained within puncta associated with the vacuolar membrane in cells grown in nutrient-rich medium or after brief nitrogen starvation. Addition of glutamine to nitrogen-starved cells leads to dissipation of Ivy1 puncta and redistribution of Ivy1 throughout the vacuolar membrane. Continued stimulation with glutamine results in concentration of Ivy1 within vacuolar membrane invaginations and its spatial separation from the EGO complex components Gtr1 and Gtr2. Disruption of vacuolar membrane invagination is associated with persistent mislocalization of Ivy1 across the vacuolar membrane and inhibition of TORC1 activity. Together, our findings illustrate a novel negative-feedback pathway that is exerted by Ivy1 on Gtr-dependent TORC1 signaling and provide insight into a potential molecular mechanism underlying TORC1 activation by vacuolar membrane remodeling.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras/genética , Dimerización , Glutamina/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Unión Proteica , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Vacuolas/genética , Vacuolas/metabolismoRESUMEN
The TORC1 complex is a key regulator of cell growth and metabolism in Saccharomyces cerevisiae The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Autofagia , Activación Enzimática , Membranas Intracelulares/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Transducción de Señal , Vacuolas/enzimologíaRESUMEN
In order to identify novel pluripotency-related oncogenes, an expression screen for oncogenic foci-inducing genes within a retroviral human embryonic stem cell cDNA library was conducted. From this screen, we identified not only known oncogenes but also intriguingly the key pluripotency factor, DPPA4 (developmental pluripotency-associated four) that encodes a DNA binding SAP domain-containing protein. DPPA4 has not been previously identified as an oncogene but is highly expressed in embryonal carcinomas, pluripotent germ cell tumors, and other cancers. DPPA4 is also mutated in some cancers. In direct transformation assays, we validated that DPPA4 is an oncogene in both mouse 3T3 cells and immortalized human dermal fibroblasts. Overexpression of DPPA4 generates oncogenic foci (sarcoma cells) and causes anchorage-independent growth. The in vitro transformed cells also give rise to tumors in immunodeficient mice. Furthermore, functional analyses indicate that both the DNA-binding SAP domain and the histone-binding C-terminal domain are critical for the oncogenic transformation activity of DPPA4. Downregulation of DPPA4 in E14 mouse embryonic stem cells and P19 mouse embryonic carcinoma cells causes decreased cell proliferation in each case. In addition, DPPA4 overexpression induces cell proliferation through genes related to regulation of G1/S transition. Interestingly, we observed similar findings for family member DPPA2. Thus, we have identified a new family of pluripotency-related oncogenes consisting of DPPA2 and DPPA4. Our findings have important implications for stem cell biology and tumorigenesis.
Asunto(s)
Células Madre Embrionarias/fisiología , Proteínas Nucleares/genética , Células Madre Pluripotentes/fisiología , Células 3T3 , Animales , Proteínas de Ciclo Celular , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HEK293 , Humanos , Ratones , Proteínas Nucleares/metabolismo , Oncogenes , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Factores de TranscripciónRESUMEN
While endogenous Myc (c-myc) and Mycn (N-myc) have been reported to be separately dispensable for murine embryonic stem cell (mESC) function, myc greatly enhances induced pluripotent stem (iPS) cell formation and overexpressed c-myc confers LIF-independence upon mESC. To address the role of myc genes in ESC and in pluripotency generally, we conditionally knocked out both c- and N-myc using myc doubly homozygously floxed mESC lines (cDKO). Both lines of myc cDKO mESC exhibited severely disrupted self-renewal, pluripotency, and survival along with enhanced differentiation. Chimeric embryos injected with DKO mESC most often completely failed to develop or in rare cases survived but with severe defects. The essential nature of myc for self-renewal and pluripotency is at least in part mediated through orchestrating pluripotency-related cell cycle and metabolic programs. This study demonstrates that endogenous myc genes are essential for mESC pluripotency and self-renewal as well as providing the first evidence that myc genes are required for early embryogenesis, suggesting potential mechanisms of myc contribution to iPS cell formation.
Asunto(s)
Diferenciación Celular , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Genes myc/fisiología , Células Madre Pluripotentes/citología , Proteínas Proto-Oncogénicas c-myc/fisiología , Animales , Biomarcadores/metabolismo , Western Blotting , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Técnicas para Inmunoenzimas , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Masculino , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre Pluripotentes/metabolismo , ARN Mensajero/genética , Regeneración , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
The dynamin-related proteins (DRPs) are self-assembling membrane remodeling machines that are indispensable for fundamental cellular trafficking and homeostatic processes. We describe in this chapter protocols developed in our laboratory for purification of full-length and minimal constructs of Chaetomium thermophilum Vps1, the model fungal DRP, using mammalian and Escherichia coli expression systems.
Asunto(s)
Chaetomium/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/aislamiento & purificación , Expresión Génica , Proteínas Recombinantes de Fusión , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/aislamiento & purificación , Animales , Línea Celular , Chaetomium/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Unión al GTP/metabolismo , Vectores Genéticos/genética , Humanos , Transfección , Proteínas de Transporte Vesicular/metabolismoRESUMEN
Sorting nexins (SNX) are a family of PX domain-containing proteins with pivotal roles in trafficking and signaling. SNX-BARs, which also have a curvature-generating Bin/Amphiphysin/Rvs (BAR) domain, have membrane-remodeling functions, particularly at the endosome. The minimal PX-BAR module is a dimer mediated by BAR-BAR interactions. Many SNX-BAR proteins, however, additionally have low-complexity N-terminal regions of unknown function. Here, we present the cryo-EM structure of the full-length SNX-BAR Mvp1, which is an autoinhibited tetramer. The tetramer is a dimer of dimers, wherein the membrane-interacting BAR surfaces are sequestered and the PX lipid-binding sites are occluded. The N-terminal low-complexity region of Mvp1 is essential for tetramerization. Mvp1 lacking its N-terminus is dimeric and exhibits enhanced membrane association. Membrane binding and remodeling by Mvp1 therefore requires unmasking of the PX and BAR domain lipid-interacting surfaces. This work reveals a tetrameric configuration of a SNX-BAR protein that provides critical insight into SNX-BAR function and regulation.
Asunto(s)
Microscopía por Crioelectrón/métodos , Prolapso de la Válvula Mitral/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nexinas de Clasificación/metabolismo , Sitios de Unión , Biofisica , Membrana Celular/metabolismo , Endosomas/metabolismo , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Dominios Proteicos/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genéticaRESUMEN
Dynamin-superfamily proteins (DSPs) are large self-assembling mechanochemical GTPases that harness GTP hydrolysis to drive membrane remodeling events needed for many cellular processes. Mutation to alanine of a fully conserved lysine within the P-loop of the DSP GTPase domain results in abrogation of GTPase activity. This mutant has been widely used in the context of several DSPs as a dominant-negative to impair DSP-dependent processes. However, the precise deficit of the P-loop K to A mutation remains an open question. Here, we use biophysical, biochemical and structural approaches to characterize this mutant in the context of the endosomal DSP Vps1. We show that the Vps1 P-loop K to A mutant binds nucleotide with an affinity similar to wild type but exhibits defects in the organization of the GTPase active site that explain the lack of hydrolysis. In cells, Vps1 and Dnm1 bearing the P-loop K to A mutation are defective in disassembly. These mutants become trapped in assemblies at the typical site of action of the DSP. This work provides mechanistic insight into the widely-used DSP P-loop K to A mutation and the basis of its dominant-negative effects in the cell.
Asunto(s)
Chaetomium/química , Dinaminas/química , Proteínas Fúngicas/genética , Lisina/genética , Mutación , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Chaetomium/citología , Chaetomium/metabolismo , Dinaminas/clasificación , Dinaminas/genética , Dinaminas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisina/metabolismo , Modelos Moleculares , Proteínas de Transporte Vesicular/clasificación , Proteínas de Transporte Vesicular/genéticaRESUMEN
TORC1 (target of rapamycin complex) integrates complex nutrient signals to generate and fine-tune a growth and metabolic response. Npr1 (nitrogen permease reactivator) is a downstream effector kinase of TORC1 that regulates the stability, activity, and trafficking of various nutrient permeases including the ammonium permeases Mep1, Mep2, and Mep3 and the general amino acid permease Gap1. Npr1 exerts its regulatory effects on Mep1 and Mep3 via Par32 (phosphorylated after rapamycin). Activation of Npr1 leads to phosphorylation of Par32, resulting in changes in its subcellular localization and function. Here we demonstrate that Par32 is a positive regulator of TORC1 activity. Loss of Par32 renders cells unable to recover from exposure to rapamycin and reverses the resistance to rapamycin of Δ npr1 cells. The sensitivity to rapamycin of cells lacking Par32 is dependent on Mep1 and Mep3 and the presence of ammonium, linking ammonium metabolism to TORC1 activity. Par32 function requires its conserved repeated glycine-rich motifs to be intact but, surprisingly, does not require its localization to the plasma membrane. In all, this work elucidates a novel mechanism by which Npr1 and Par32 exert regulatory feedback on TORC1.
Asunto(s)
Retroalimentación Fisiológica , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Sistemas de Transporte de Aminoácidos/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Secuencia Conservada , Retroalimentación Fisiológica/efectos de los fármacos , Mutación/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Sirolimus/farmacología , Fracciones Subcelulares/metabolismoRESUMEN
Dynamin-related proteins (DRPs) are large multidomain GTPases required for diverse membrane-remodeling events. DRPs self-assemble into helical structures, but how these structures are tailored to their cellular targets remains unclear. We demonstrate that the fungal DRP Vps1 primarily localizes to and functions at the endosomal compartment. We present crystal structures of a Vps1 GTPase-bundle signaling element (BSE) fusion in different nucleotide states to capture GTP hydrolysis intermediates and concomitant conformational changes. Using cryoEM, we determined the structure of full-length GMPPCP-bound Vps1. The Vps1 helix is more open and flexible than that of dynamin. This is due to further opening of the BSEs away from the GTPase domains. A novel interface between adjacent GTPase domains forms in Vps1 instead of the contacts between the BSE and adjacent stalks and GTPase domains as seen in dynamin. Disruption of this interface abolishes Vps1 function in vivo. Hence, Vps1 exhibits a unique helical architecture, highlighting structural flexibilities of DRP self-assembly.
Asunto(s)
Proteínas de Unión al GTP , Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismoRESUMEN
Myc regulates key cellular processes including cell cycle, differentiation, and apoptosis. It has long been thought to direct these functions by acting solely as a classic transcription factor regulating expression of a small number of key target genes through discrete chromatin events in their promoters. A recent wave of genomics studies together directly challenge the narrowness of this model. For example, Myc binds to tens of thousands of sites in the human genome. It also regulates histone acetylation at and transcription of a remarkable number of genes, far beyond that expected of a classical transcription factor. The influence of Myc on chromatin also surprisingly extends to both genic and expansive intergenic regions. These studies support an evolving model in which Myc activity on chromatin is far more complex than previously imagined. The ability of Myc to act both locally and globally on chromatin may be responsible for its wide-ranging effects on the biology of stem and tumor cells.
Asunto(s)
Cromatina/fisiología , Genes myc/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Cromatina/genética , Cromatina/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismoRESUMEN
Lac(+)/Lac(-) selection of recombinant plasmids based on the insertional inactivation of LacZalpha gene cannot differentiate recombinant clones in some cases. Several fragments of exon 11 of human brca1 gene were cloned in LacZalpha-containing plasmids so that frameshift appeared at the 5(')-end of the fragments tested but these fragments were in frame with the part of LacZalpha situated downstream of the polylinker. All plasmids except one caused blue colonies formation after being transformed in Escherichia coli LacZDeltaM15 cells in spite of the frameshift. The fact may be explained by reinitiation of translation within the mRNA transcribed from the inserted DNA fragments at in-frame AUG, GUG, and UUG. The data demonstrated limitations on the Lac(+)/Lac(-) selection of LacZalpha-based recombinant plasmids.