Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(47): E7474-E7482, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821769

RESUMEN

Hemolytic diseases include a variety of conditions with diverse etiologies in which red blood cells are destroyed and large amounts of hemeproteins are released. Heme has been described as a potent proinflammatory molecule that is able to induce multiple innate immune responses, such as those triggered by TLR4 and the NLRP3 inflammasome, as well as necroptosis in macrophages. The mechanisms by which eukaryotic cells respond to the toxic effects induced by heme to maintain homeostasis are not fully understood, however. Here we describe a previously uncharacterized cellular response induced by heme: the formation of p62/SQTM1 aggregates containing ubiquitinated proteins in structures known as aggresome-like induced structures (ALIS). This action is part of a response driven by the transcription factor NRF2 to the excessive generation of reactive oxygen species induced by heme that results in the expression of genes involved in antioxidant responses, including p62/SQTM1. Furthermore, we show that heme degradation by HO-1 is required for ALIS formation, and that the free iron released on heme degradation is necessary and sufficient to induce ALIS. Moreover, ferritin, a key protein in iron metabolism, prevents excessive ALIS formation. Finally, in vivo, hemolysis promotes an increase in ALIS formation in target tissues. Our data unravel a poorly understood aspect of the cellular responses induced by heme that can be explored to better understand the effects of free heme and free iron during hemolytic diseases such as sickle cell disease, dengue fever, malaria, and sepsis.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1/metabolismo , Animales , Ferritinas/metabolismo , Células HEK293 , Hemo/química , Humanos , Ratones , Estrés Oxidativo , Agregado de Proteínas , Proteolisis , Células RAW 264.7 , Proteína Sequestosoma-1/química , Ubiquitinación , Regulación hacia Arriba
2.
Autophagy ; 13(3): 625-626, 2017 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-28055290

RESUMEN

Heme is an essential molecule expressed in many tissues where it plays key roles as the prosthetic group of several proteins involved in vital physiological and metabolic processes such as gas and electron transport. Structurally, heme is a tetrapyrrole ring containing an atom of iron (Fe) in its center. When released into the extracellular milieu, heme exerts several deleterious effects, which make it an important player in infectious and noninfectious hemolytic diseases where large amounts of free heme are observed such as malaria, dengue fever, ß-thalassemia, sickle cell disease and ischemia-reperfusion. Our recent work has uncovered an unappreciated cellular response triggered by heme or Fe, one of its degradation products, on macrophages, which is the formation of protein aggregates known as aggresome-like induced structres (ALIS). This response was shown to be fully dependent on ROS production and the activation of the transcription factor NFE2L2/NRF2. In addition, we have demonstrated that heme degradation by HMOX1/HO-1 (heme oxygenase 1) is required and that Fe is essential for the formation of ALIS, as heme analogs lacking the central atom of Fe are not able to induce these structures. ALIS formation is also observed in vivo, in a model of phenylhydrazine (PHZ)-induced hemolysis, indicating that it is an integral part of the host response to excessive free heme and that it may play a role in cellular homeostasis.


Asunto(s)
Hemo/farmacología , Hierro/farmacología , Agregado de Proteínas/efectos de los fármacos , Animales , Humanos , Modelos Biológicos
3.
PLoS One ; 8(8): e72076, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24015207

RESUMEN

The genus Phytomonas includes parasites that are etiological agents of important plant diseases, especially in Central and South America. These parasites are transmitted to plants via the bite of an infected phytophagous hemipteran. Despite the economic impact of these parasites, many basic questions regarding the genus Phytomonas remain unanswered, such as the mechanism by which the parasites cope with the immune response of the insect vector. In this report, using a model of systemic infection, we describe the function of Oncopeltus fasciatus hemocytes in the immune response towards the tomato parasite Phytomonas serpens. Hemocytes respond to infection by trapping parasites in nodular structures and phagocytizing the parasites. In electron microscopy of hemocytes, parasites were located inside vacuoles, which appear fused with lysosomes. The parasites reached the O. fasciatus salivary glands at least six hours post-infection. After 72 hours post-infection, many parasites were attached to the salivary gland outer surface. Thus, the cellular responses did not kill all the parasites.


Asunto(s)
Hemocitos/parasitología , Heterópteros/inmunología , Trypanosomatina/inmunología , Animales , Hemocitos/inmunología , Hemocitos/patología , Heterópteros/parasitología , Interacciones Huésped-Parásitos , Inmunidad Celular , Fagocitosis , Glándulas Salivales/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA