Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Public Health ; 233: 149-156, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897067

RESUMEN

OBJECTIVES: The aim of this study was to analyse the spatial patterns and factors associated with the incidence of tuberculosis-diabetes (TB-DM) in Brazil, from 2001 to 2019. STUDY DESIGN: Ecological study. METHODS: Brazilian municipalities were used as the units of analysis. The local empirical Bayesian rate and the spatial autocorrelation test were calculated. Moran and Getis-Ord Gi∗ were used to identify spatial clusters, and spatially weighted regression was conducted. RESULTS: In total, 75,021 new cases of TB associated with DM were reported in Brazil during the study period. Most Brazilian municipalities had an average TB-DM incidence of 1.0-2.0/100,000 inhabitants. The regression showed that the Gini index (ß = 0.85) and family health strategy coverage (ß = -0.26) were the two indicators that had the most influence on TB-DM incidence in Brazil. CONCLUSIONS: This study identified spatial clusters of TB-DM in Brazil. The results also indicated that social inequalities played a key role in the incidence of TB.


Asunto(s)
Diabetes Mellitus , Análisis Espacial , Tuberculosis , Humanos , Brasil/epidemiología , Incidencia , Tuberculosis/epidemiología , Diabetes Mellitus/epidemiología , Factores Socioeconómicos , Teorema de Bayes , Factores de Riesgo , Masculino , Femenino
2.
Semin Cancer Biol ; 83: 283-302, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33757848

RESUMEN

Despite improvements in the therapeutic approaches for hematological malignancies in the last decades, refractory disease still occurs, and cancer drug resistance still remains a major hurdle in the clinical management of these cancer patients. The investigation of this problem has been extensive and different mechanism and molecules have been associated with drug resistance. MicroRNAs (miRNAs) have been described as having an important action in the emergence of cancer, including hematological tumors, and as being major players in their progression, aggressiveness and response to treatments. Moreover, miRNAs have been strongly associated with cancer drug resistance and with the modulation of the sensitivity of cancer cells to a wide array of anticancer drugs. Furthermore, this role has also been reported for miRNAs packaged into extracellular vesicles (EVs-miRNAs), which in turn have been described as essential for the horizontal transfer of drug resistance to sensitive cells. Several studies have been suggesting the use of miRNAs as biomarkers for drug response and clinical outcome prediction, as well as promising therapeutic tools in hematological diseases. Indeed, the combination of miRNA-based therapeutic tools with conventional drugs contributes to overcome drug resistance. This review addresses the role of miRNAs in the pathogenesis of hematological malignances, namely multiple myeloma, leukemias and lymphomas, highlighting their important action (either in their cell-free circulating form or within circulating EVs) in drug resistance and their potential clinical applications.


Asunto(s)
Vesículas Extracelulares , Neoplasias Hematológicas , MicroARNs , Mieloma Múltiple , Resistencia a Antineoplásicos/genética , Vesículas Extracelulares/genética , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Humanos , MicroARNs/genética
3.
Drug Resist Updat ; 62: 100833, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429792

RESUMEN

Drug resistance remains a major hurdle to successful cancer treatment, being accountable for approximately 90% of cancer-related deaths. In the past years, increasing attention has been given to the role of extracellular vesicles (EVs) in the horizontal transfer of drug resistance in cancer. Indeed, many studies have described the dissemination of therapy resistance traits mediated by EVs, which may be transferred from drug resistant tumor cells to their drug sensitive counterparts. Importantly, different key players of drug resistance have been identified in the cargo of those EVs, such as drug efflux pumps, oncoproteins, antiapoptotic proteins, or microRNAs, among others. Interestingly, the EVs-mediated crosstalk between cells from the tumor microenvironment (TME) and tumor cells has emerged as another important mechanism that leads to cancer cells drug resistance. Recently, the cargo of the TME-derived EVs responsible for the transfer of drug resistance traits has also become a focus of attention. In addition, the possible mechanisms involved in drug sequestration by EVs, likely to contribute to cancer drug resistance, are also described and discussed herein. Despite the latest scientific advances in the field of EVs, this is still a challenging area of research, particularly in the clinical setting. Therefore, further investigation is needed to assess the relevance of EVs to the failure of cancer patients to drug treatment, to identify biomarkers of drug resistance in the EV's cargo, and to develop effective therapeutic strategies to surmount drug resistance. This up-to-date review summarizes relevant literature on the role of EVs in the transfer of drug resistance competences to cancer cells, and the relevance of tumor cells and of TME cells in this process. Finally, this knowledge is integrated with a discussion of possible future clinical applications of EVs as biomarkers of drug resistance.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Biomarcadores/metabolismo , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
4.
Molecules ; 28(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37894682

RESUMEN

The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on host cell surface glycans to facilitate interaction with the angiotensin-converting enzyme 2 (ACE-2) receptor. This interaction between ACE2 and the spike protein is a gateway for the virus to enter host cells and may be targeted by antiviral drugs to inhibit viral infection. Therefore, targeting the interaction between these two proteins is an interesting strategy to prevent SARS-CoV-2 infection. A library of glycan mimetics and derivatives was selected for a virtual screening performed against both ACE2 and spike proteins. Subsequently, in vitro assays were performed on eleven of the most promising in silico compounds to evaluate: (i) their efficacy in inhibiting cell infection by SARS-CoV-2 (using the Vero CCL-81 cell line as a model), (ii) their impact on ACE2 expression (in the Vero CCL-81 and MDA-MB-231 cell lines), and (iii) their cytotoxicity in a human lung cell line (A549). We identified five synthetic compounds with the potential to block SARS-CoV-2 infection, three of them without relevant toxicity in human lung cells. Xanthene 1 stood out as the most promising anti-SARS-CoV-2 agent, inhibiting viral infection and viral replication in Vero CCL-81 cells, without causing cytotoxicity to human lung cells.


Asunto(s)
Antineoplásicos , COVID-19 , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Unión Proteica , Antineoplásicos/farmacología , Antivirales/farmacología
5.
Drug Resist Updat ; 59: 100797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34955385

RESUMEN

Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.


Asunto(s)
Neoplasias , Microambiente Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión
6.
Lett Appl Microbiol ; 75(2): 249-260, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35429170

RESUMEN

This study evaluated the effects of a fibre and phenolic-rich flour (IGF) prepared from Isabel grape by-products on the growth and metabolism of different probiotics and distinct bacterial populations part of the human intestinal microbiota during an in vitro colonic fermentation. IGF was submitted to simulated gastrointestinal digestion before use in the experiments. IGF favoured the growth of the probiotics Lactobacillus acidophilus La-05, L. casei L-26 and Bifidobacterium lactis Bb-12, with viable counts of >7 log CFU per ml, as well as caused decreases in pH values and increases in organic acid production in the growth medium during 48 h of cultivation. IGF increased the population of beneficial micro-organisms forming the human intestinal microbiota, particularly Lactobacillus spp., decreased the pH values, and increased the lactic acid and short-chain fatty acid (acetic, butyric and propionic acids) production during 24 h of in vitro colonic fermentation. These results indicate the potential prebiotic effects of IGF, which should represent a novel sustainable added-value ingredient with functional properties and gut-health benefits.


Asunto(s)
Microbiota , Probióticos , Vitis , Fermentación , Harina , Humanos , Lactobacillus acidophilus/metabolismo , Fenoles/análisis , Fenoles/farmacología , Probióticos/metabolismo , Probióticos/farmacología
7.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430163

RESUMEN

Monitoring measurable residual disease (MRD) is crucial to assess treatment response in Multiple Myeloma (MM). Detection of MRD in peripheral blood (PB) by exploring Extracellular Vesicles (EVs), and their cargo, would allow frequent and minimally invasive monitoring of MM. This work aims to detect biomarkers of MRD in EVs isolated from MM patient samples at diagnosis and remission and compare the MRD-associated content between BM and PB EVs. EVs were isolated by size-exclusion chromatography, concentrated by ultrafiltration, and characterized according to their size and concentration, morphology, protein concentration, and the presence of EV-associated protein markers. EVs from healthy blood donors were used as controls. It was possible to isolate EVs from PB and BM carrying MM markers. Diagnostic samples had different levels of MM markers between PB and BM paired samples, but no differences between PB and BM were found at remission. EVs concentration was lower in the PB of healthy controls than of patients, and MM markers were mostly not detected in EVs from controls. This study pinpoints the potential of PB EVs from MM remission patients as a source of MM biomarkers and as a non-invasive approach for monitoring MRD.


Asunto(s)
Vesículas Extracelulares , Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/metabolismo , Neoplasia Residual/diagnóstico , Biopsia Líquida , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo
8.
Trop Anim Health Prod ; 54(2): 136, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35296954

RESUMEN

One of the main challenges in the livestock sector is the need to increase sustainability and production efficiency. In pig production, feed is the main production cost. High moisture grains (HMGs) have recently emerged as an interesting alternative to conventional feedstuffs. In this study, the nutritional value for pigs of eight HMGs was determined considering the chemical composition and the in vitro digestibility. We have used four seeds (lupine, barley, wheat, and corn) and two substrates (water and whey). Lupine HMG showed higher values of crude fat (2.12%) and crude protein (8.59%). Within cereal HMGs, corn HMG showed higher DM (34.37%), OM (36.27%), and starch (27.17%) values; wheat HMG stood out for crude protein content (4.23%) and barley for NDF (5.68%). The pH values were low for all HMG, with lupine having the highest value (4.39). Ammoniacal nitrogen had the highest value for wheat HMG (6.10%). When whey was used as substrate, it improved the characteristics of the HMG. Regarding in vitro digestibility, of the four HMGs studied, wheat showed the highest value for DM (89.93%), while lupine showed the highest value for crude protein (96.12%). When considering the substrates, whey showed better results for all in vitro digestibility's parameters (87.48%, 90.95%, and 90.59%, for DM, OM, and crude protein, respectively). Overall, all HMGs showed good conservation of nutritional value and high in vitro digestibility. The use of whey as a substrate was beneficial for HMG quality. Results show that the analyzed HMG can be efficiently used in the framework of swine production.


Asunto(s)
Alimentación Animal , Hordeum , Alimentación Animal/análisis , Animales , Digestión , Grano Comestible/química , Porcinos , Triticum/metabolismo
9.
J Appl Microbiol ; 130(4): 1117-1129, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32961612

RESUMEN

AIMS: This study aimed to evaluate the antifungal and antibiofilm effects of essential oil (EO) from leaves of Lippia gracilis and its major constituents, thymol and carvacrol, against phytopathogenic fungi. METHODS AND RESULTS: The leaves of L. gracilis were hydrodistilled to obtain the EO and the chemical composition was determined by GC/MS analysis. The antifungal activity of EO of L. gracilis was evaluated on the vegetative and mycelial growth of Colletotrichum gloeosporioides, Colletotrichum lindemuthianum, Fusarium oxysporum and Fusarium solani. In addition, the ability of the oil to inhibit fungal biofilm formation was assessed by total biomass quantification using crystal violet staining, analysis of metabolic activity, and scanning electron microscopy (SEM). Moreover the antifungal and antibiofilm activities of the monoterpenes, thymol and carvacrol, present in EO of L. gracilis were evaluated against F. oxysporum. The analysis of the chemical composition of EO extracted from L. gracilis, revealed the presence of monoterpenes (94·13%), which included carvacrol (48·57%) and thymol (7·78%), and 4 sesquiterpenes (3·74%). In general, EO showed significant antifungal activity and inhibited the formation of fungal biofilms. Furthermore, thymol and carvacrol showed significant antifungal and antibiofilm activities against F. oxysporum. SEM images showed structural changes in fungal morphology upon treatment with EO of L. gracilis. CONCLUSION: The results presented in this study showed promising antifungal and antibiofilm effects of EO of L. gracilis and its major components, carvacrol and thymol. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings indicate that the EO extracted from L. gracilis, and the monoterpenes, carvacrol and thymol have a great potential as antifungal and antibiofilm agents. Furthermore, this is the first report of the antibiofilm activity of the EO of L. gracilis and its major components against phytopathogenic fungi.


Asunto(s)
Antifúngicos/farmacología , Hongos/efectos de los fármacos , Lippia/química , Aceites Volátiles/farmacología , Enfermedades de las Plantas/microbiología , Antifúngicos/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Cimenos/análisis , Cimenos/farmacología , Monoterpenos/análisis , Monoterpenos/farmacología , Aceites Volátiles/química , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/química , Timol/análisis , Timol/farmacología
10.
Molecules ; 26(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805741

RESUMEN

A series of novel functionalized methyl 3-(hetero)arylthieno[3,2-b]pyridine-2-carboxylates 2a-2h were synthesized by C-C Pd-catalyzed Suzuki-Miyaura cross-coupling of methyl 3-bromothieno[3,2-b]pyridine-2-carboxylate with (hetero)aryl pinacol boranes, trifluoro potassium boronate salts or boronic acids. Their antitumoral potential was evaluated in two triple negative breast cancer (TNBC) cell lines-MDA-MB-231 and MDA-MB-468, by sulforhodamine B assay. Their effects on the non-tumorigenic MCF-12A cells were also evaluated. The results demonstrated that three compounds caused growth inhibition in both TNBC cell lines, with little or no effect against the non-tumorigenic cells. The most promising compound was further studied concerning possible effects on cell viability (by trypan blue exclusion assay), cell proliferation (by bromodeoxyuridine assay) and cell cycle profile (by flow cytometry). The results demonstrated that the GI50 concentration of compound 2e (13 µM) caused a decreased in MDA-MB-231 cell number, which was correlated with a decreased in the % of proliferating cells. Moreover, this compound increased G0/G1 phase and decreased S phases, when compared to control cells (although was not statistic significant). Interestingly, compound 2e also reduced tumor size using an in ovo CAM (chick chorioallantoic membrane) model. This work highlights the potential antitumor effect of a novel methyl 3-arylthieno[3,2-b]pyridine-2-carboxylate derivative.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Tienopiridinas/síntesis química , Tienopiridinas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Membrana Corioalantoides/cirugía , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Glándulas Mamarias Humanas/efectos de los fármacos , Glándulas Mamarias Humanas/patología , Estructura Molecular , Trasplante de Neoplasias , Relación Estructura-Actividad , Tienopiridinas/química , Neoplasias de la Mama Triple Negativas/patología
11.
Drug Resist Updat ; 47: 100647, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31704541

RESUMEN

Cancer-derived extracellular vesicles (EVs) have been detected in the bloodstream and other biofluids of cancer patients. They carry various tumor-derived molecules such as mutated DNA and RNA fragments, oncoproteins as well as miRNA and protein signatures associated with various phenotypes. The molecular cargo of EVs partially reflects the intracellular status of their cellular origin, however various sorting mechanisms lead to the enrichment or depletion of EVs in specific nucleic acids, proteins or lipids. It is becoming increasingly clear that cancer-derived EVs act in a paracrine and systemic manner to promote cancer progression by transferring aggressive phenotypic traits and drug-resistant phenotypes to other cancer cells, modulating the anti-tumor immune response, as well as contributing to remodeling the tumor microenvironment and formation of pre-metastatic niches. These findings have raised the idea that cancer-derived EVs may serve as analytes in liquid biopsies for real-time monitoring of tumor burden and drug resistance. In this review, we have summarized recent longitudinal clinical studies describing promising EV-associated biomarkers for cancer progression and tracking cancer evolution as well as pre-clinical and clinical evidence on the relevance of EVs for monitoring the emergence or progression of drug resistance. Furthermore, we outlined the state-of-the-art in the development and commercialization of EV-based biomarkers and discussed the scientific and technological challenges that need to be met in order to translate EV research into clinically applicable tools for precision medicine.


Asunto(s)
Biomarcadores de Tumor/análisis , Resistencia a Antineoplásicos , Vesículas Extracelulares/química , Biopsia Líquida/métodos , Neoplasias/diagnóstico , Progresión de la Enfermedad , Humanos , Neoplasias/tratamiento farmacológico
12.
Drug Resist Updat ; 46: 100645, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31585396

RESUMEN

Curative cancer therapy remains a major challenge particularly in cancers displaying multidrug resistance (MDR). The MDR phenotype is characterized by cross-resistance to a wide array of anticancer drugs harboring distinct structures and mechanisms of action. The multiple factors involved in mediating MDR may include host factors, tumor factors as well as tumor-host interactions. Among the host factors are genetic variants and drug-drug interactions. The plethora of tumor factors involves decreased drug uptake primarily via impaired influx transporters, increased drug efflux predominantly due to the overexpression of MDR efflux transporters of the ATP-binding cassette superfamily or due to drug efflux mediated by extracellular vesicles (EVs) or drug-loaded lysosomes undergoing exocytosis, deregulation of cell death mechanisms (i.e. anti-apoptotic modalities), enhanced DNA damage repair, epigenetic alterations and/or deregulation of microRNAs. The intratumor heterogeneity and dynamics, along with cancer stem cell plasticity, are important tumor factors. Among the tumor-host interactions are the role of the tumor microenvironment, selective pressure of various stressor conditions and agents, acidic pH and the intracellular transfer of traits mediated by EVs. The involvement of these diverse factors in MDR, highlights the need for precision medicine and real-time personalized treatments of individual cancer patients. In this review, written by a group of researchers from COST Action STRATAGEM "New diagnostic and therapeutic tools against multidrug resistant tumors", we aim to bring together these multidisciplinary and interdisciplinary features of MDR cancers. Importantly, it is becoming increasingly clear that deciphering the molecular mechanisms underlying anticancer drug resistance, will pave the way towards the development of novel precision medicine treatment modalities that are able to surmount distinct and well-defined mechanisms of anticancer drug resistance.


Asunto(s)
Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Antineoplásicos/uso terapéutico , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Interacciones Farmacológicas/genética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
14.
Molecules ; 24(3)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717179

RESUMEN

New quinazolinone derivatives of the marine-derived alkaloids fiscalin B (3) and fumiquinazoline G (1), with neuroprotective and antitumor effects, were synthesized. Eleven quinazolinone-containing indole alkaloids were synthesized, proceeding the anti analogs via a one-pot method, and the syn analogs by the Mazurkiewicz-Ganesan approach. The neuroprotection capacity of these compounds on the rotenone-damage human neuroblastoma cell SH-SY5y was evaluated using the MTT assay. Compounds 1, 3, 5, and 7 showed more than 25% protection. The antitumor activity was investigated using the sulforhodamine B assay and some compounds were tested on the non-malignant MCF-12A cells. Fumiquinazoline G (1) was the most potent compound, with GI50 values lower than 20 µM. Compounds 5, 7, and 11 were more active in all tumor cell lines when compared to their enantiomers. Compounds 5, 7, 10, and 11 had very little effect in the viability of the non-malignant cells. Differences between enantiomeric pairs were also noted as being essential for these activities the S-configuration at C-4. These results reinforce the previously described activities of the fiscalin B (3) as substance P inhibitor and fumiquinazoline G (1) as antitumor agent showing potential as lead compounds for the development of drugs for treatment of neurodegenerative disorders and cancer, respectively.


Asunto(s)
Alcaloides/síntesis química , Antineoplásicos/síntesis química , Fármacos Neuroprotectores/síntesis química , Peptidomiméticos/síntesis química , Quinazolinonas/síntesis química , Alcaloides/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Peptidomiméticos/farmacología , Quinazolinonas/farmacología , Relación Estructura-Actividad
17.
Mar Drugs ; 16(8)2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30065225

RESUMEN

Many fungal quinazolinone metabolites, which contain the methyl-indole pyrazino [1,2-b]quinazoline-3,6-dione core, have been found to possess promising antitumor activity. The purpose of this work was to synthesize the enantiomeric pairs of two members of this quinazolinone family, to explore their potential as antitumor and their ability to revert multidrug resistance. The marine natural product fiscalin B (4c), and antienantiomers (4b, 5b, and 5c) were synthesized via a one-pot approach, while the syn enantiomers (4a, 4d, 5a, and 5d) were synthetized by a multi-step procedure. These strategies used anthranilic acid (i), chiral N-protected α-amino acids (ii), and tryptophan methyl esters (iii) to form the core ring of pyrazino[2,1-b]quinazoline-3,6-dione scaffold. Four enantiomeric pairs, with different enantiomeric purities, were obtained with overall yields ranging from 7 to 40%. Compounds 4a⁻d and 5a⁻d were evaluated for their growth inhibitory effect against two tumor cell lines. Differences between enantiomeric pairs were noted and 5a⁻d displayed GI50 values ranging from 31 to 52 µM, which are lower than those of 4a⁻d. Nevertheless, no effect on P-glycoprotein (P-gp) modulation was observed for all compounds. This study disclosed new data for fiscalin B (4c), as well as for its analogues for a future development of novel anticancer drug leads.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Productos Biológicos/química , Quinazolinonas/farmacología , Alcaloides/síntesis química , Alcaloides/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Organismos Acuáticos , Línea Celular Tumoral , Humanos , Estructura Molecular , Quinazolinonas/síntesis química , Quinazolinonas/química
18.
Molecules ; 23(2)2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29438315

RESUMEN

BACKGROUND: Heat shock protein 90 (HSP90) is a well-known target for cancer therapy. In a previous work, some of us have reported a series of 3-aryl-naphtho[2,3-d]isoxazole-4,9-diones as inhibitors of HSP90. METHODS: In the present work, various compounds with new chromenopyridinone and thiochromenopyridinone scaffolds were synthesized as potential HSP90 inhibitors. Their binding affinity to HSP90 was studied in vitro. Selected compounds (5 and 8) were further studied in various tumor cell lines regarding their potential to cause cell growth inhibition, alter the cell cycle profile, inhibit proliferation, and induce apoptosis. Their effect on HSP90 client protein levels was also confirmed in two cell lines. Finally, the antitumor activity of compound 8 was studied in A431 squamous cell carcinoma xenografts in nude mice. RESULTS: Our results indicated that treatment with compounds 5 and 8 decreased the proliferation of tumor cell lines and compound 8 induced apoptosis. In addition, these two compounds were able to downregulate selected proteins known as "clients" of HSP90. Finally, treatment of xenografted mice with compound 5 resulted in a considerable dose-dependent inhibition of tumor growth. CONCLUSIONS: Our results show that two new compounds with a chromenopyridinone and thiochromenopyridinone scaffold are promising putative HSP90 inhibitors causing tumor cell growth inhibition.


Asunto(s)
Antineoplásicos/farmacología , Benzopiranos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Isoxazoles/farmacología , Piridonas/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Apoptosis/genética , Benzopiranos/síntesis química , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Femenino , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Concentración 50 Inhibidora , Isoxazoles/síntesis química , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridonas/síntesis química , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Survivin , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/antagonistas & inhibidores , Quinasas raf/genética , Quinasas raf/metabolismo
19.
Molecules ; 23(12)2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30545153

RESUMEN

The search for novel anticancer small molecules and strategies remains a challenge. Our previous studies have identified TXA1 (1-{[2-(diethylamino)ethyl]amino}-4-propoxy-9H- thioxanthen-9-one) as a hit compound, with in vitro antitumor potential by modulating autophagy and apoptosis in human tumor cell lines. In the present study, the mechanism of action and antitumor potential of the soluble salt of this molecule (TXA1.HCl) was further investigated using in vitro and mouse xenograft tumor models of NSCLC. Our results showed that TXA1.HCl affected steroid biosynthesis, increased RagD expression, and caused abnormal cellular cholesterol localization. In addition, TXA1.HCl treatment presented no toxicity to nude mice and significantly reduced the growth of human NSCLC cells xenografts in mice. Overall, this work provides new insights into the mechanism of action of TXA1, which may be relevant for the development of anticancer therapeutic strategies, which target cholesterol transport.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas , Colesterol/metabolismo , Neoplasias Pulmonares , Xantonas/farmacología , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Tioxantenos/química , Tioxantenos/farmacología , Xantonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA