Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biomed Sci ; 31(1): 75, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044206

RESUMEN

BACKGROUND: Among the non-traditional antibacterial agents in development, only a few targets critical Gram-negative bacteria such as carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter baumannii or cephalosporin-resistant Enterobacteriaceae. Endolysins and their genetically modified versions meet the World Health Organization criteria for innovation, have a novel mode of antibacterial action, no known bacterial cross-resistance, and are being intensively studied for application against Gram-negative pathogens. METHODS: The study presents a multidisciplinary approach, including genetic engineering of LysECD7-SMAP and production of recombinant endolysin, its analysis by crystal structure solution following molecular dynamics simulations and evaluation of antibacterial properties. Two types of antimicrobial dosage forms were formulated, resulting in lyophilized powder for injection and hydroxyethylcellulose gel for topical administration. Their efficacy was estimated in the treatment of sepsis, and pneumonia models in BALB/c mice, diabetes-associated wound infection in the leptin receptor-deficient db/db mice and infected burn wounds in rats. RESULTS: In this work, we investigate the application strategies of the engineered endolysin LysECD7-SMAP and its dosage forms evaluated in preclinical studies. The catalytic domain of the enzyme shares the conserved structure of endopeptidases containing a putative antimicrobial peptide at the C-terminus of polypeptide chain. The activity of endolysins has been demonstrated against a range of pathogens, such as Klebsiella pneumoniae, A. baumannii, P. aeruginosa, Staphylococcus haemolyticus, Achromobacter spp, Burkholderia cepacia complex and Haemophylus influenzae, including those with multidrug resistance. The efficacy of candidate dosage forms has been confirmed in in vivo studies. Some aspects of the interaction of LysECD7-SMAP with cell wall molecular targets are also discussed. CONCLUSIONS: Our studies demonstrate the potential of LysECD7-SMAP therapeutics for the systemic or topical treatment of infectious diseases caused by susceptible Gram-negative bacterial species and are critical to proceed LysECD7-SMAP-based antimicrobials trials to advanced stages.


Asunto(s)
Endopeptidasas , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas , Ratones Endogámicos BALB C , Animales , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Ratones , Endopeptidasas/farmacología , Endopeptidasas/administración & dosificación , Bacterias Gramnegativas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Ratas , Masculino , Ingeniería de Proteínas/métodos
2.
World J Microbiol Biotechnol ; 40(6): 186, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683213

RESUMEN

The ability of most opportunistic bacteria to form biofilms, coupled with antimicrobial resistance, hinder the efforts to control widespread infections, resulting in high risks of negative outcomes and economic costs. Endolysins are promising compounds that efficiently combat bacteria, including multidrug-resistant strains and biofilms, without a low probability of subsequent emergence of stable endolysin-resistant phenotypes. However, the details of antibiofilm effects of these enzymes are poorly understood. To elucidate the interactions of bacteriophage endolysins LysAm24, LysAp22, LysECD7, and LysSi3 with bacterial films formed by Gram-negative species, we estimated their composition and assessed the endolysins' effects on the most abundant exopolymers in vitro. The obtained data suggests a pronounced efficiency of these lysins against biofilms with high (Klebsiella pneumoniae) and low (Acinetobacter baumannii) matrix contents, or dual-species biofilms, resulting in at least a twofold loss of the biomass. These peptidoglycan hydrolases interacted diversely with protective compounds of biofilms such as extracellular DNA and polyanionic carbohydrates, indicating a spectrum of biofilm-disrupting effects for bacteriolytic phage enzymes. Specifically, we detected disruption of acid exopolysaccharides by LysAp22, strong DNA-binding capacity of LysAm24, both of these interactions for LysECD7, and neither of them for LysSi3.


Asunto(s)
Bacteriófagos , Biopelículas , Endopeptidasas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Endopeptidasas/metabolismo , Endopeptidasas/farmacología , Endopeptidasas/química , Bacteriófagos/enzimología , Acinetobacter baumannii/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Proteínas Virales/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química
3.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077564

RESUMEN

Despite the widespread use of the COVID-19 vaccines, the search for effective antiviral drugs for the treatment of patients infected with SARS-CoV-2 is still relevant. Genetic variability leads to the continued circulation of new variants of concern (VOC). There is a significant decrease in the effectiveness of antibody-based therapy, which raises concerns about the development of new antiviral drugs with a high spectrum of activity against VOCs. We synthesized new analogs of uracil derivatives where uracil was substituted at the N1 and N3 positions. Antiviral activity was studied in Vero E6 cells against VOC, including currently widely circulating SARS-CoV-2 Omicron. All synthesized compounds of the panel showed a wide antiviral effect. In addition, we determined that these compounds inhibit the activity of recombinant SARS-CoV-2 RdRp. Our study suggests that these non-nucleoside uracil-based analogs may be of future use as a treatment for patients infected with circulating SARS-CoV-2 variants.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Vacunas contra la COVID-19 , Humanos , Uracilo/farmacología
4.
Allergy ; 76(9): 2840-2854, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837568

RESUMEN

BACKGROUND: First vaccines for prevention of Coronavirus disease 2019 (COVID-19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti-SARS-CoV-2 effect of siRNA both in vitro and in vivo. METHODS: To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS-CoV-2 genes fused with the firefly luciferase reporter gene and SARS-CoV-2-infected cells was used. The most potent siRNA, siR-7, was modified by Locked nucleic acids (LNAs) to obtain siR-7-EM with increased stability and was formulated with the peptide dendrimer KK-46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation - siR-7-EM/KK-46. Using the Syrian Hamster model for SARS-CoV-2 infection the antiviral capacity of siR-7-EM/KK-46 complex was evaluated. RESULTS: We identified the siRNA, siR-7, targeting SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA-modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR-7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR-7-EM/KK-46 in vivo. CONCLUSIONS: Thus, we developed a therapeutic strategy for COVID-19 based on inhalation of a modified siRNA-peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID-19 patients.


Asunto(s)
COVID-19 , Dendrímeros , Animales , Antivirales , Humanos , Péptidos/genética , ARN Interferente Pequeño/genética , ARN Viral , SARS-CoV-2
5.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769085

RESUMEN

Approximately 1/6 of humanity is at high risk of experiencing cholera epidemics. The development of effective and safe vaccines against Vibrio cholerae, the primary cause of cholera, is part of the public health measures to prevent cholera epidemics. Natural nontoxigenic V. cholerae isolates represent a source of new genetically improved and relatively safe vaccine strains. However, the genomic engineering of wild-type V. cholerae strains is difficult, and these strains are genetically unstable due to their high homologous recombination activity. We comprehensively characterized two V. cholerae isolates using genome sequencing, bioinformatic analysis, and microscopic, physiological, and biochemical tests. Genetic constructs were Gibson assembled and electrotransformed into V. cholerae. Bacterial colonies were assessed using standard microbiological and immunological techniques. As a result, we created a synthetic chromoprotein-expressing reporter operon. This operon was used to improve the V. cholerae genome engineering approach and monitor the stability of the genetic constructs. Finally, we created a stable candidate V. cholerae vaccine strain bearing a recA deletion and expressing the ß-subunit of cholera toxin. Thus, we developed a strategy for the rapid creation of genetically stable and relatively safe candidate vaccine strains. This strategy can be applied not only to V. cholerae but also to other important human bacterial pathogens.


Asunto(s)
Vacunas contra el Cólera , Operón , Vibrio cholerae/genética , Técnicas de Transferencia de Gen , Genes Reporteros , Ingeniería Genética , Genoma Bacteriano
6.
Crit Rev Microbiol ; 46(6): 703-726, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32985279

RESUMEN

The spread of bacterial strains resistant to commonly used antibiotics urges the development of novel antibacterial compounds. Ideally, these novel antimicrobials should be less prone to the development of resistance. Peptidoglycan-degrading enzymes are a promising class of compounds with a fundamentally different mode of action compared to traditionally used antibiotics. The difference in the mechanism of action implies differences both in the mechanisms of resistance and the chances of its emergence. To critically assess the potential of resistance development to peptidoglycan-degrading enzymes, we review the available evidence for the development of resistance to these enzymes in vitro, along with the known mechanisms of resistance to lysozyme, bacteriocins, autolysins, and phage endolysins. We conclude that genetic determinants of resistance to peptidoglycan-degrading enzymes are unlikely to readily emerge de novo. However, resistance to these enzymes would probably spread by the horizontal transfer between intrinsically resistant and susceptible species. Finally, we speculate that the higher cost of the therapeutics based on peptidoglycan degrading enzymes compared to classical antibiotics might result in less misuse, which in turn would lead to lower selective pressure, making these antibacterials less prone to resistance development.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana , Enzimas/farmacología , Peptidoglicano/química , Animales , Bacterias/metabolismo , Bacterias/virología , Infecciones Bacterianas/microbiología , Bacteriófagos/enzimología , Bacteriófagos/fisiología , Humanos , Peptidoglicano/metabolismo
7.
BMC Microbiol ; 16(1): 106, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27296712

RESUMEN

BACKGROUND: Fungi are organisms with the highest natural capacity to degrade lignocellulose substrates, which is enabled by complex systems of extracellular enzymes, whose expression and secretion depend on the characteristics of substrates and the environment. RESULTS: This study reports a secretome analysis for white-rot basidiomycete Trametes hirsuta cultivated on a synthetic media and a lignocellulose substrate. We demonstrate that T. hirsuta st. 072 produces multiple extracellular ligninolytic, cellulolytic, hemicellulolytic, peroxide generating, and proteolytic enzymes, as well as cerato-platanins. In contrast to other white rot species described earlier, which mostly secreted glucanases and mannosidases in response to the presence of the lignocellulose substrate, T. hirsuta expressed a spectrum of extracellular cellulolytic enzymes containing predominantly cellobiases and xylanases. As proteomic analysis could not detect lignin peroxidase (LiP) among the secreted lignin degrading enzymes, we attributed the observed extracellular LiP - like activity to the expressed versatile peroxidase (VP). An accessory enzyme, glyoxal oxidase, was found among the proteins secreted in the media during submerged cultivation of T. hirsuta both in the presence and in the absence of copper. However, aryl-alcohol oxidase (AAO) was not identified, despite the presence of AAO enzymatic activity secreted by the fungus. The spectra of the expressed enzymes dramatically changed depending on the growth conditions. Transfer from submerged cultivation to surface cultivation with the lignocellulose substrate switched off expression of exo-ß-1,3-glucanase and α-amylase and turned on secretion of endo-ß-1,3-glucanase and a range of glycosidases. In addition, an aspartic peptidase started being expressed instead of family S53 protease. For the first time, we report production of cerato-platanin proteins by Trametes species. The secretion of cerato-platanins was observed only in response to contact with lignocellulose, thus indicating a specific role of these proteins in degradation of the lignocellulose substrates. CONCLUSIONS: Our results suggest a sequential mechanism of natural substrate degradation by T. hirsuta, in which the fungus produces different sets of enzymes to digest all main components of the substrate during cultivation.


Asunto(s)
Cobre/farmacología , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Trametes/efectos de los fármacos , Trametes/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Cationes/farmacología , Celulosa/metabolismo , Cobre/química , Sulfato de Cobre/farmacología , Activación Enzimática , Glicósido Hidrolasas , Oxidorreductasas/metabolismo , Peroxidasas/metabolismo , Proteómica , Trametes/enzimología , Trametes/crecimiento & desarrollo
8.
J Basic Microbiol ; 56(12): 1392-1397, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27400399

RESUMEN

Here we present the results of the exploration of laccase multigene families (MGFs) in basidiomycetous fungi from different taxonomic groups using a next generation sequencing (NGS) technology. In our study, multiple laccase genes were identified in all of the investigated fungi (13 species) from Polyporaceae, Phanerochaetaceae, Meruliaceae, Pleurotaceae, Physalacriaceae, and Peniophoraceae families. It was shown that phylogenetic positioning of the newly identified sequences exhibit patterns of clusterization with respect to enzyme properties. This can be a potentially useful tool for selecting naturally existing laccases with different physicochemical characteristics relevant to different biotechnological applications. Moreover, the method developed in this study can be used in the screening of environmental samples and fast characterization of laccase MGFs in newly identified fungal species.


Asunto(s)
Basidiomycota/enzimología , Basidiomycota/genética , Genes Fúngicos , Lacasa/genética , Familia de Multigenes , Basidiomycota/clasificación , Basidiomycota/crecimiento & desarrollo , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia
9.
Biotechnol Appl Biochem ; 61(2): 230-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24112404

RESUMEN

Because of the wide application of laccases in different biotechnological processes and intense studies of the enzymes from different sources, the development of efficient techniques for monitoring laccase level is a task of significant importance. Enzyme-linked immunosorbent assay (ELISA) and Western blotting techniques were developed to control total content and isoform composition of laccases, including their recombinant preparations. Because glycosylated and nonglycosylated forms have different structures and sets of epitopes, two kinds of polyclonal antibodies were obtained and applied. The first antibody recognized the native (glycosylated) laccase purified from Trametes hirsuta and the second one reacted with recombinant (nonglycosylated) laccase expressed in Escherichia coli. Titers of the antibodies were analyzed by indirect ELISA with laccases isolated from several strains of basidiomycetes. The obtained cross-reactivity data for both antibodies demonstrated a correspondence with sequence homology of the laccases. The antibodies raised against recombinant (nonglycosylated) laccase had higher titers and thus were preferable for screening of recombinant laccase in cultural media. Thus, optimal antibody preparations were selected for screening of laccase-producing strains, and the control of recombinant enzymes and the efficiency of their use in immunochemical control of laccase levels were confirmed.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Lacasa/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Basidiomycota/enzimología , Lacasa/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología
10.
Int J Antimicrob Agents ; : 107328, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244166

RESUMEN

Pharmacokinetics and safety studies of innovative drugs is an essential part of drug development process. Previously we have developed novel drug for intravenous administration (lyophilizate) containing modified endolysin LysECD7-SMAP that showed notable antibacterial effect in different animal models of systemic infections. Here we present data on pharmacokinetics of endolysin in mice after single and multiple injections. Time-concentration curves were obtained, pharmacokinetic parameters for preparation (C0, kel t1/2, AUC0-∞, MRT, ClT, Vss) were calculated. It was shown that although endolysin is rather short-living in blood serum (t1/2 = 12.5 min) the therapeutic concentrations of LysECD7-SMAP (in degraded and non-degraded form) were detected for 60 min after injection that is sufficient for antibacterial effect. Based on the obtained data, it was proposed that endolysin distributes presumably in murine blood, degrades in blood and liver, and is eliminated via glomerular filtration. Safety profile of the preparation relating to general toxicity, immunotoxicity and allergenicity was assessed in rodents. It was demonstrated that LysECD7-SMAP in potential therapeutic (12.5 mg/kg), 10-fold (125 mg/kg) and 40-fold (500 mg/kg) doses showed no signs of intoxication and significant abnormalities after single and repeated i.v. administrations, preparation was non-immunogenic and induced minor and reversible allergic reaction in animal.

11.
Gels ; 10(1)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38247783

RESUMEN

The development of new and effective antibacterials for pharmaceutical or cosmetic skin care that have a low potential for the emergence and expansion of bacterial resistance is of high demand in scientific and applied research. Great hopes are placed on alternative agents such as bactericidal peptidoglycan hydrolases, depolymerases, etc. Enzybiotic-based preparations are being studied for the treatment of various infections and, among others, can be used as topical formulations and dressings with protein-polysaccharide complexes. Here, we investigate the antibiofilm properties of a novel enzybiotic cocktail of phage endolysin LysSi3 and bacteriocin lysostaphin, formulated in the alginate gel matrix and its ability to control the opportunistic skin-colonizing bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as mixed-species biofilms. Our results propose that the application of SiL-gel affects different components of biofilm extracellular polymeric substances, disrupts the matrix, and eliminates the bacteria embedded in it. This composition is highly effective against biofilms composed of Gram-negative and Gram-positive species and does not possess significant cytotoxic effects. Our data form the basis for the development of antibacterial skin care products with a gentle but effective mode of action.

12.
J Pharm Sci ; 113(8): 2093-2100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38692487

RESUMEN

Antibacterial therapy with phage-encoded endolysins or their modified derivatives with improved antibacterial, biochemical and pharmacokinetic properties is one of the most promising strategies that can supply existing antibacterial drugs array. Gram-negative bacteria-induced infections treatment is especially challenging because of rapidly spreading bacterial resistance. We have developed modified endolysin LysECD7-SMAP with a significant antibacterial activity and broad spectra of action against gram-negative bacteria. Endolysin was formulated in a bactericidal gel for topical application with pronounced effectivity in local animal infectious models. Here we present preclinical safety studies and pharmacokinetics of LysECD7-SMAP-based gel. We have detected LysECD7-SMAP in the skin and underlying muscle at therapeutic concentrations when the gel is applied topically to intact or injured skin. Moreover, the protein does not enter the bloodstream, and has no systemic bioavailability, assuming no systemic adverse effects. In studies of general toxicology, local tolerance, and immunotoxicology it was approved that LysECD7-SMAP gel local application results in the absence of toxic effects after single and multiple administration. Thus, LysECD7-SMAP-containing gel has appropriate pharmacokinetics and can be considered as safe that supports the initiation of the phase I clinical trials of novel antibacterial drug intending to treat acute wound infections caused by resistant gram-negative bacteria.


Asunto(s)
Antibacterianos , Endopeptidasas , Geles , Endopeptidasas/administración & dosificación , Endopeptidasas/farmacocinética , Endopeptidasas/farmacología , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Piel/metabolismo , Piel/efectos de los fármacos , Administración Tópica , Ratones , Femenino , Masculino
13.
Antiviral Res ; 225: 105871, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38555022

RESUMEN

The spread of COVID-19 continues due to genetic variation in SARS-CoV-2. Highly mutated variants of SARS-CoV-2 have an increased transmissibility and immune evasion. Due to the emergence of various new variants of the virus, there is an urgent need to develop broadly effective specific drugs for therapeutic strategies for the prevention and treatment of COVID-19. Molnupiravir (EIDD-2801, MK-4482), is an orally bioavailable ribonucleoside analogue of ß-D-N4-hydroxycytidine (NHC), has demonstrated efficacy against SARS-CoV-2 and was recently approved for COVID-19 treatment. To improve antiviral potency of NHC, we developed a panel of NHC conjugates with lipophilic vectors and ester derivatives with amino- and carboxylic-acids. Most of the synthesized compounds had comparable or higher (2-20 times) antiviral activity than EIDD-2801, against different lineages of SARS-CoV-2, MERS-CoV, seasonal coronaviruses OC43 and 229E, as well as bovine coronavirus. For further studies, we assessed the most promising compound in terms of activity, simplicity and cost of synthesis - NHC conjugate with phenylpropionic acid (SN_9). SN_9 has shown high efficacy in prophylactic, therapeutic and transmission models of COVID-19 infection in hamsters. Importantly, SN_9 profoundly inhibited virus replication in the lower respiratory tract of hamsters and transgenic mice infected with the Omicron sublineages XBB.1.9.1, XBB.1.16 and EG.5.1.1. These data indicate that SN_9 represents a promising antiviral drug candidate for COVID-19 treatment, and NHC modification strategies deserve further investigation as an approach to develop prodrugs against various coronaviruses.


Asunto(s)
COVID-19 , Citidina/análogos & derivados , Hidroxilaminas , SARS-CoV-2 , Ratones , Animales , Bovinos , Humanos , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19
14.
Biosensors (Basel) ; 12(5)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35624601

RESUMEN

Surface-enhanced Raman scattering (SERS) spectroscopy is a surface- or cavity-enhanced variant of Raman scattering spectroscopy that allows the detection of analytes with a sensitivity down to single molecules. This method involves the use of SERS-active surfaces or cavities capable of concentrating incident radiation into small mode volumes containing the analyte. Here, we have engineered an ultranarrow metal-dielectric nano-cavity out of a film of the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) glycoprotein and a silver surface, held together by interaction between reduced protein sulfhydryl groups and silver. The concentration of light in this nano-cavity allows the label-free recording of the characteristic Raman spectra of protein samples smaller than 1 pg. This is sufficient for the ultrasensitive detection of viral protein antigens at physiologically relevant levels. Moreover, the protein SERS signal can be increased by several orders of magnitude by coating the RBD film with a nanometer-thick silver shell, thereby raising the cavity Q-factor. This ensures a sub-femtogram sensitivity of the viral antigen detection. A simple theoretical model explaining the observed additional enhancement of the SERS signal from the silver-coated protein is proposed. Our study is the first to obtain the characteristic Raman and SERS spectra of the RBD of S glycoprotein, the key SARS-CoV-2 viral antigen, directly, without the use of Raman-reporter molecules. Thus, our approach allows label-free recording of the characteristic spectra of viral antigens at concentrations orders of magnitude lower than those required for detecting the whole virus in biological media. This makes it possible to develop a high-performance optical detection method and conformational analysis of the pathogen and its variants.


Asunto(s)
COVID-19 , Espectrometría Raman , Antígenos Virales , COVID-19/diagnóstico , Humanos , SARS-CoV-2 , Plata/química , Espectrometría Raman/métodos , Glicoproteína de la Espiga del Coronavirus
15.
Biology (Basel) ; 11(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35205037

RESUMEN

The subway is one of the most actively used means of transport in the traffic infrastructure of large metropolitan areas. More than seven million passengers use the Moscow subway every day, which promotes the exchange of microorganisms between people and the surrounding subway environment. In this research, a study of the bacterial communities of two Moscow subway stations was conducted and the common subway microbiome was determined. However, there were differences in microbiological and antibiotic-resistance profiles, depending on the station. The station's operational period since opening correlated with the taxonomic diversity and resistance of the identified bacteria. Moreover, differences between aerosol and surface bacterial communities were found at the two subway stations, indicating the importance of diversified sampling during the microbiome profiling of public areas. In this study, we also compared our data with previously published results obtained for the Moscow subway. Despite sample collection at different stations and seasons, we showed the presence of 15 common genera forming the core microbiome of the Moscow subway, which represents human commensal species, as well as widespread microorganisms from the surrounding environment.

16.
Viruses ; 14(3)2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35337024

RESUMEN

The avidity index (AI) of IgG to the RBD of SARS-CoV-2 was determined for 71 patients with a mild (outpatient) course of COVID-19, including 39 primarily and 36 secondarily reinfected, and 92 patients with a severe (hospital) course of COVID-19, including 82 primarily and 10 secondarily infected. The AI was shown to correlate with the severity of repeated disease. In the group of outpatients with a mild course, the reinfected patients had significantly higher median AIs than those with primary infections (82.3% vs. 37.1%, p < 0.0001). At the same time, in patients with a severe course of COVID-19, reinfected patients still had low-avidity antibodies (median AI of 28.4% vs. 25% in the primarily infected, difference not significant, p > 0.05). This suggests that the presence of low-avidity IgG to RBD during reinfection is a negative prognostic factor, in which a patient's risk of developing COVID-19 in a severe form is significantly increased. Thus, patients with IgG of low avidity (AI ≤ 40%) had an 89 ± 20.5% chance of a severe course of recurrent COVID-19, whereas the detection of high-avidity antibodies (AI ≥ 50%) gave a probability of 94 ± 7.9% for a mild course of recurrent disease (p < 0.05).


Asunto(s)
COVID-19 , SARS-CoV-2 , Afinidad de Anticuerpos , COVID-19/diagnóstico , Humanos , Inmunoglobulina G , Pronóstico , Reinfección/diagnóstico
17.
Vaccines (Basel) ; 10(6)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35746546

RESUMEN

Mass vaccination campaigns against COVID-19 affected more than 90% of the population in most developed countries. The new epidemiologic wave of COVID-19 has been ongoing since the end of 2021. It is caused by a virus variant B.1.1.529, also known as "Omicron" and its descendants. The effectiveness of major vaccines against Omicron is not known. The purpose of this study is to evaluate the efficacy of the Sputnik V vaccine. The main goal is to assess its protection against hospitalization in the period of Omicron dominance. We conducted our study based on a large clinical center in Moscow (Russia) where 1112 patients were included. We used the case-population method to perform the calculations. The data we obtained indicate that the Omicron variant causes at least 90% of infections in the studied cohort. The effectiveness of protection against hospitalization with COVID-19 in our study was 85.9% (95% CI 83.0-88.0%) for those who received more than one dose. It was 87.6% (95% CI 85.4-89.5%) and 97.0% (95% CI 95.9-97.8%) for those who received more than two or three doses. The effectiveness in cases of more severe forms was higher than for less severe ones. Thus, present study indicates the high protective efficacy of vaccination against hospitalization with COVID-19 in case of Omicron lineage.

18.
Front Immunol ; 13: 1023164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466896

RESUMEN

WHO has declared the outbreak of monkeypox as a public health emergency of international concern. In less than three months, monkeypox was detected in more than 30 000 people and spread to more than 80 countries around the world. It is believed that the immunity formed to smallpox vaccine can protect from monkeypox infection with high efficiency. The widespread use of Vaccinia virus has not been carried out since the 1980s, which raises the question of the level of residual immunity among the population and the identification of groups requiring priority vaccination. We conducted a cross-sectional serological study of remaining immunity among Moscow residents. To do this, a collection of blood serum samples of age group over 30 years old was formed, an in-house ELISA test system was developed, and a virus neutralization protocol was set up. Serum samples were examined for the presence of IgG antibodies against Vaccinia virus (n=2908), as well as for the ability to neutralize plaque formation with a Vaccinia virus MNIIVP-10 strain (n=299). The results indicate the presence of neutralizing antibody titer of 1/20 or more in 33.3 to 53.2% of people older than 45 years. Among people 30-45 years old who probably have not been vaccinated, the proportion with virus neutralizing antibodies ranged from 3.2 to 6.7%. Despite the higher level of antibodies in age group older than 66 years, the proportion of positive samples in this group was slightly lower than in people aged 46-65 years. The results indicate the priority of vaccination in groups younger than 45, and possibly older than 66 years to ensure the protection of the population in case of spread of monkeypox among Moscow residents. The herd immunity level needed to stop the circulation of the virus should be at least 50.25 - 65.28%.


Asunto(s)
Enfermedades Transmisibles , Mpox , Orthopoxvirus , Humanos , Adulto , Persona de Mediana Edad , Monkeypox virus , Estudios Transversales , Moscú/epidemiología , Virus Vaccinia , Anticuerpos Neutralizantes
19.
Bioresour Technol ; 335: 125229, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34010738

RESUMEN

The process of kraft lignin modification by the white-rot fungus Trametes hirsuta was investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), and groups of systematically changing compounds were delineated. In the course of cultivation, fungus tended to degrade progressively more reduced compounds and produced more oxidized ones. However, this process was not gradual - the substantial discontinuity was observed between 6th and 10th days of cultivation. Simultaneously, the secretion of ligninolytic peroxidases by the fungus was changing in a cascade manner - new isoenzymes were added to the mixture of the already secreted ones, and once new isoenzyme appeared both its relative quantity and number of isoforms increased as cultivation proceeded. It was proposed, that the later secreted peroxidases (MnP7 and MnP1) possess higher substrate affinity for some phenolic compounds and act in more specialized manner than the early secreted ones (MnP5 and VP2).


Asunto(s)
Lignina , Trametes , Peroxidasas , Polyporaceae , Proteoma
20.
Artículo en Inglés | MEDLINE | ID: mdl-34501634

RESUMEN

The SARS-CoV-2 pandemic remains a global health issue for several reasons, such as the low vaccination rates and a lack of developed herd immunity to the evolution of SARS-CoV-2, as well as its potential inclination to elude neutralizing antibodies. It should be noted that the severity of the COVID-19 disease is significantly affected by the presence of co-infections. Comorbid conditions are caused not only by pathogenic and opportunistic microorganisms but also by some representatives of the environmental microbiome. The presence of patients with moderate and severe forms of the disease in hospitals indicates the need for epidemiological monitoring of (1) bacterial pathogens circulating in hospitals, especially the ESKAPE group pathogens, and (2) the microbiome of various surfaces in hospitals. In our study, we used combined methods based on PCR and NGS sequencing, which are widely used for epidemiological monitoring. Through this approach, we identified the DNA of pathogenic bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, CoNS, and Achromobacter spp.) on various surfaces. We also estimated the microbiome diversity of surfaces and identified the potential reservoirs of infections using 16S rRNA profiling. Although we did not assess the viability of identified microorganisms, our results indicate the possible risks of insufficient regular disinfection of surfaces, regardless of department, at the Infectious Diseases Hospital. Controlling the transmission of nosocomial diseases is critical to the successful treatment of COVID-19 patients, the rational use of antimicrobial drugs, and timely decontamination measures.


Asunto(s)
COVID-19 , Bacterias/genética , Brotes de Enfermedades , Hospitales , Humanos , ARN Ribosómico 16S/genética , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA