Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 37(8): e23079, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37410022

RESUMEN

Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.


Asunto(s)
Adipocitos Beige , Ratones , Ratas , Animales , Activación Transcripcional , Adipocitos Beige/metabolismo , Genisteína/farmacología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Blanco/metabolismo , Termogénesis/genética , Elementos de Respuesta , Tejido Adiposo Pardo/metabolismo
2.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175691

RESUMEN

Obesity causes systemic inflammation, hepatic and renal damage, as well as gut microbiota dysbiosis. Alternative vegetable sources rich in polyphenols are known to prevent or delay the progression of metabolic abnormalities during obesity. Vachellia farnesiana (VF) is a potent source of polyphenols with antioxidant and anti-inflammatory activities with potential anti-obesity effects. We performed an in vivo preventive or an interventional experimental study in mice and in vitro experiments with different cell types. In the preventive study, male C57BL/6 mice were fed with a Control diet, a high-fat diet, or a high-fat diet containing either 0.1% methyl gallate, 10% powdered VFP, or 0.5%, 1%, or 2% of a polyphenolic extract (PE) derived from VFP (Vachellia farnesiana pods) for 14 weeks. In the intervention study, two groups of mice were fed for 14 weeks with a high-fat diet and then one switched to a high-fat diet with 10% powdered VFP for ten additional weeks. In the in vitro studies, we evaluated the effect of a VFPE (Vachellia farnesiana polyphenolic extract) on glucose-stimulated insulin secretion in INS-1E cells or of naringenin or methyl gallate on mitochondrial activity in primary hepatocytes and C2C12 myotubes. VFP or a VFPE increased whole-body energy expenditure and mitochondrial activity in skeletal muscle; prevented insulin resistance, hepatic steatosis, and kidney damage; exerted immunomodulatory effects; and reshaped fecal gut microbiota composition in mice fed a high-fat diet. VFPE decreased insulin secretion in INS-1E cells, and its isolated compounds naringenin and methyl gallate increased mitochondrial activity in primary hepatocytes and C2C12 myotubes. In conclusion VFP or a VFPE prevented systemic inflammation, insulin resistance, and hepatic and renal damage in mice fed a high-fat diet associated with increased energy expenditure, improved mitochondrial function, and reduction in insulin secretion.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Masculino , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Prebióticos , Ratones Endogámicos C57BL , Obesidad/metabolismo , Extractos Vegetales/farmacología , Inflamación/tratamiento farmacológico
3.
Int J Obes (Lond) ; 45(11): 2471-2481, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34331001

RESUMEN

BACKGROUND: Dietary bioactive compounds have been demonstrated to produce several health benefits. Genistein, an isoflavone of soy protein, and resveratrol, a polyphenol from grapes, have been shown to improve insulin sensitivity and to stimulate white adipose tissue (WAT) browning, leading to increased energy expenditure. However, it has not been demonstrated in humans whether genistein or resveratrol have the capacity to stimulate the differentiation of stromal vascular fraction (SVF) cells from white fat into beige adipocytes. SUBJECTS/METHODS: With this aim, we assessed whether stromal vascular fraction cells obtained from biopsies of the subdermal fat depots of subjects with normal body weight (NW) or from subjects with overweight/obesity with (OIR) or without (OIS) insulin resistance were able to differentiate into the beige adipose tissue lineage in vitro, by exposing the cells to genistein, resveratrol, or the combination of both. RESULTS: The results showed that SVF cells obtained from NW or OIS subjects were able to differentiate into beige adipocytes according to an increased expression of beige biomarkers including UCP1, PDRM-16, PGC1α, CIDEA, and SHOX2 upon exposure to genistein. However, SVF cells from OIR subjects were unable to differentiate into beige adipocytes with any of the inducers. Exposure to resveratrol or the combination of resveratrol/genistein did not significantly stimulate the expression of browning markers in any of the groups studied. We found that the non-responsiveness of the SVF from subjects with obesity and insulin resistance to any of the inducers was associated with an increase in the expression of endoplasmic reticulum stress markers. CONCLUSION: Consumption of genistein may stimulate WAT browning mainly in NW or OIS subjects. Thus, obesity associated with insulin resistance may be considered as a condition that prevents some beneficial effects of some dietary bioactive compounds.


Asunto(s)
Adipocitos Beige/fisiología , Diferenciación Celular/efectos de los fármacos , Genisteína/farmacología , Resistencia a la Insulina/fisiología , Fracción Vascular Estromal/fisiología , Adulto , Diferenciación Celular/fisiología , Femenino , Humanos , Masculino , Psicometría/instrumentación , Psicometría/métodos , Fracción Vascular Estromal/metabolismo , Encuestas y Cuestionarios
5.
Mol Nutr Food Res ; 66(8): e2100838, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35142428

RESUMEN

SCOPE: Genistein increases whole body energy expenditure by stimulating white adipose tissue (WAT) browning and thermogenesis. G-Coupled receptor GPR30 can mediate some actions of genistein, however, it is not known whether it is involved in the activation of WAT-thermogenesis. Thus, the aim of the study is to determine whether genistein activates thermogenesis coupled to an increase in WAT browning and mitochondrial activity, in GPR30+/+ and GPR30-/- mice. METHODS AND RESULTS: GPR30+/+ and GPR30-/- mice are fed control or high fat sucrose diets containing or not genistein for 8 weeks. Body weight and composition, energy expenditure, glucose tolerance, and browning markers in WAT, and oxygen consumption rate, 3', 5'-cyclic adenosine monophosphate (cAMP) concentration and browning markers in adipocytes are evaluated. Genistein consumption reduces body weight and fat mass gain in a different extent in both genotypes, however, energy expenditure is lower in GPR30-/- compared to GPR30+/+ mice, accompanied by a reduction in browning markers, maximal mitochondrial respiration, cAMP concentration, and browning markers in cultured adipocytes from GPR30-/- mice. Genistein improves glucose tolerance in GPR30+/+ , but this is partially observed in GPR30-/- mice. CONCLUSION: The results show that GPR30 partially mediates genistein stimulation of WAT thermogenesis and the improvement of glucose tolerance.


Asunto(s)
Tejido Adiposo Pardo , Genisteína , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal , Metabolismo Energético , Genisteína/metabolismo , Genisteína/farmacología , Glucosa/metabolismo , Ratones , Ratones Endogámicos C57BL , Termogénesis/genética
6.
J Nutr Biochem ; 96: 108768, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34000412

RESUMEN

The increase in incidence and prevalence of metabolic diseases, such as diabetes, obesity, and metabolic syndrome, is a health problem worldwide. Nutritional strategies that can impact on mitochondrial activity represent a novel and effective option to modulate energy expenditure and energetic metabolism in cells and tissues and could be used as adjuvant treatments for metabolic-associated disorders. Dietary bioactive compounds also known as "food bioactives" have proven to exert multiple health benefits and counteract metabolic alterations. In the last years, it has been consistently reported that the modulation of mitochondrial function represents one of the mechanisms behind the bioactive compounds-dependent health improvements. In this review, we focus on gathering, summarizing, and discussing the evidence that supports the effect of dietary bioactive compounds on mitochondrial activity and the relation of these effects in the pathological context. Despite the evidence presented here on in vivo and in vitro effects, more studies are needed to determine their effectiveness in humans.


Asunto(s)
Alimentos Funcionales , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Alimentos Funcionales/análisis , Microbioma Gastrointestinal , Humanos , Mitocondrias/patología , Consumo de Oxígeno , Sirtuina 1/metabolismo , Termogénesis
7.
J Nutr Biochem ; 68: 59-68, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31030168

RESUMEN

White adipose tissue (WAT) can differentiate into beige adipose tissue by the browning process. Some polyphenols, including isoflavones, particularly genistein, are suggested to increase the expression of browning markers. There is evidence that consumption of genistein can attenuate body weight gain and improve glucose tolerance and blood lipid levels. The aim of the present study was to investigate the potential mechanisms of stimulation by which genistein activates the browning of WAT. We studied the stimulation of the expression of browning markers in the following models: mice fed genistein; preadipocytes from 3 T3-L1 cells; and the stromal vascular fraction (SVF) from the inguinal adipose tissue of mice. The results indicated that genistein can stimulate the browning process by at least two mechanisms. An indirect mechanism was involved in the induction of PGC-1α/FNDC5 in skeletal muscle leading to an increase in the myokine irisin. In preadipocytes, irisin was able to increase the expression of Ucp1 and Tmem26, markers of browning, to increase energy expenditure. Interestingly, genistein was also able to activate browning by a direct mechanism. Incubation of preadipocytes with genistein increased UCP1 expression as well as some biomarkers of browning in a concentration-dependent manner, possibly via phosphorylation of AMPK. The effect of genistein was accompanied by an increase in the number of mitochondria as well as in the maximum respiration rate of the adipocytes. In conclusion, this study indicated that genistein can increase energy expenditure by stimulating the browning process directly in preadipocytes and indirectly by increasing the circulating levels of irisin.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético/efectos de los fármacos , Genisteína/farmacología , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Beige/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Fibronectinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Termogénesis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA