Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 171(5): 1015-1028.e13, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29056339

RESUMEN

Laboratory mice, while paramount for understanding basic biological phenomena, are limited in modeling complex diseases of humans and other free-living mammals. Because the microbiome is a major factor in mammalian physiology, we aimed to identify a naturally evolved reference microbiome to better recapitulate physiological phenomena relevant in the natural world outside the laboratory. Among 21 distinct mouse populations worldwide, we identified a closely related wild relative to standard laboratory mouse strains. Its bacterial gut microbiome differed significantly from its laboratory mouse counterpart and was transferred to and maintained in laboratory mice over several generations. Laboratory mice reconstituted with natural microbiota exhibited reduced inflammation and increased survival following influenza virus infection and improved resistance against mutagen/inflammation-induced colorectal tumorigenesis. By demonstrating the host fitness-promoting traits of natural microbiota, our findings should enable the discovery of protective mechanisms relevant in the natural world and improve the modeling of complex diseases of free-living mammals. VIDEO ABSTRACT.


Asunto(s)
Microbioma Gastrointestinal , Ratones/clasificación , Ratones/microbiología , Animales , Animales de Laboratorio , Animales Salvajes , Carcinogénesis/inmunología , Resistencia a la Enfermedad , Femenino , Masculino , Maryland , Ratones/inmunología , Ratones Endogámicos C57BL , Peromyscus , Virosis/inmunología
2.
Proc Biol Sci ; 286(1915): 20191698, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31718494

RESUMEN

Acute rises in glucocorticoid hormones allow individuals to adaptively respond to environmental challenges but may also have negative consequences, including oxidative stress. While the effects of chronic glucocorticoid exposure on oxidative stress have been well characterized, those of acute stress or glucocorticoid exposure have mostly been overlooked. We examined the relationship between acute stress exposure, glucocorticoids and oxidative stress in Japanese quail (Coturnix japonica). We (i) characterized the pattern of oxidative stress during an acute stressor in two phenotypically distinct breeds; (ii) determined whether corticosterone ingestion, in the absence of acute stress, increased oxidative stress, which we call glucocorticoid-induced oxidative stress (GiOS); and (iii) explored how prior experience to stressful events affected GiOS. Both breeds exhibited an increase in oxidative stress in response to an acute stressor. Importantly, in the absence of acute stress, ingesting corticosterone caused an acute rise in plasma corticosterone and oxidative stress. Lastly, birds exposed to no previous acute stress or numerous stressful events had high levels of GiOS in response to acute stress, while birds with moderate prior exposure did not. Together, these findings suggest that an acute stress response results in GiOS, but prior experience to stressors may modulate that oxidative cost.


Asunto(s)
Corticosterona/sangre , Coturnix/fisiología , Glucocorticoides/metabolismo , Estrés Oxidativo , Animales , Corticosterona/administración & dosificación , Femenino , Hormonas/metabolismo , Distribución Aleatoria , Estrés Psicológico
3.
Gen Comp Endocrinol ; 272: 57-62, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500372

RESUMEN

Vertebrates release glucocorticoids during stressful events. If stress occurs during reproduction, the resulting offspring can show altered phenotypes that are thought to arise from increased exposure to maternal glucocorticoids. Developing offspring can metabolize maternal glucocorticoids, which can alter the pattern of exposure they encounter. For egg laying vertebrates, we are just beginning to understand how embryonic steroid metabolism impacts embryonic exposure to maternal glucocorticoids. Here we injected three doses of radioactive corticosterone into Japanese quail (Coturnix japonica) eggs to determine the degree of embryonic exposure at days six and nine of development. We found that increasing injection dose increased the amount of radioactivity found in the embryo at day six but by day nine the effect of injection dose disappeared as the amount of radioactivity within the embryo dropped to equivalent levels for all three doses. Interestingly, when examined as a percentage of initial dose, there were no differences between treatment groups at any time points. Importantly, using thin-layer chromatography we characterized that some free steroid, putatively identified as corticosterone, does reach the developing embryo. Together, our data suggest that the in ovo metabolism of maternal corticosterone can eventually eliminate it from the egg, but before this happens, embryos developing in eggs with elevated amounts of maternal corticosterone are exposed to higher levels early in development. This has important implications for how we understand the developmental steroid environment and the mechanisms underlying maternal stress effects.


Asunto(s)
Yema de Huevo/metabolismo , Desarrollo Embrionario/fisiología , Glucocorticoides/metabolismo , Animales , Aves , Corticosterona/metabolismo , Femenino
4.
Biol Lett ; 10(11): 20140502, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25392311

RESUMEN

Maternal effects have gained attention as a method by which mothers may alter the physiological condition and phenotype of their offspring based upon current environmental conditions. The physiological and phenotypic outcomes of glucocorticoid-mediated maternal effects have been extensively studied in a variety of vertebrates; however, the underlying mechanism is currently unclear. Here, we injected tritiated corticosterone into the yolks of freshly laid Japanese quail eggs (Coturnix japonica) and traced its movement and metabolism through the in ovo development period. We found that corticosterone was extensively conjugated throughout the egg by the end of development, and while minimal corticosterone was detected within the embryo during development, accumulation of a conjugated metabolite in the embryo started to occur on day 6 of development. Because no movement and metabolism of corticosterone occurred in infertile eggs, our findings suggest that embryos are not passive recipients of maternal steroids, but instead appear to possess extensive metabolic capabilities, which may modulate their exposure to maternal steroids.


Asunto(s)
Corticosterona/metabolismo , Coturnix/metabolismo , Glucocorticoides/metabolismo , Animales , Coturnix/crecimiento & desarrollo , Embrión no Mamífero/metabolismo , Óvulo/metabolismo
5.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-37732241

RESUMEN

The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.

6.
Elife ; 122024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990923

RESUMEN

The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.


Asunto(s)
Caenorhabditis elegans , Pseudomonas aeruginosa , Animales , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/virología , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/genética , Interacciones Huésped-Patógeno
7.
Science ; 365(6452)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31371577

RESUMEN

Laboratory mouse studies are paramount for understanding basic biological phenomena but also have limitations. These include conflicting results caused by divergent microbiota and limited translational research value. To address both shortcomings, we transferred C57BL/6 embryos into wild mice, creating "wildlings." These mice have a natural microbiota and pathogens at all body sites and the tractable genetics of C57BL/6 mice. The bacterial microbiome, mycobiome, and virome of wildlings affect the immune landscape of multiple organs. Their gut microbiota outcompete laboratory microbiota and demonstrate resilience to environmental challenges. Wildlings, but not conventional laboratory mice, phenocopied human immune responses in two preclinical studies. A combined natural microbiota- and pathogen-based model may enhance the reproducibility of biomedical studies and increase the bench-to-bedside safety and success of immunological studies.


Asunto(s)
Animales Salvajes/microbiología , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Investigación Biomédica Traslacional/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA