Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(11): e26784, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39031955

RESUMEN

Early brain development is characterized by the formation of a highly organized structural connectome, which underlies brain's cognitive abilities and influences its response to diseases and environmental factors. Hence, quantitative assessment of structural connectivity in the perinatal stage is useful for studying normal and abnormal neurodevelopment. However, estimation of the connectome from diffusion MRI data involves complex computations. For the perinatal period, these computations are further challenged by the rapid brain development, inherently low signal quality, imaging difficulties, and high inter-subject variability. These factors make it difficult to chart the normal development of the structural connectome. As a result, there is a lack of reliable normative baselines of structural connectivity metrics at this critical stage in brain development. In this study, we developed a computational method based on spatio-temporal averaging in the image space for determining such baselines. We used this method to analyze the structural connectivity between 33 and 44 postmenstrual weeks using data from 166 subjects. Our results unveiled clear and strong trends in the development of structural connectivity in the perinatal stage. We observed increases in measures of network integration and segregation, and widespread strengthening of the connections within and across brain lobes and hemispheres. We also observed asymmetry patterns that were consistent between different connection weighting approaches. Connection weighting based on fractional anisotropy and neurite density produced the most consistent results. Our proposed method also showed considerable agreement with an alternative technique based on connectome averaging. The new computational method and results of this study can be useful for assessing normal and abnormal development of the structural connectome early in life.


Asunto(s)
Encéfalo , Conectoma , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Femenino , Conectoma/métodos , Masculino , Adulto , Imagen de Difusión Tensora/métodos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/crecimiento & desarrollo , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Adulto Joven , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/crecimiento & desarrollo
2.
Med Image Anal ; 95: 103186, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701657

RESUMEN

Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to assess the brain white matter. Fiber orientation distribution functions (FODs) are a common way of representing the orientation and density of white matter fibers. However, with standard FOD computation methods, accurate estimation requires a large number of measurements that usually cannot be acquired for newborns and fetuses. We propose to overcome this limitation by using a deep learning method to map as few as six diffusion-weighted measurements to the target FOD. To train the model, we use the FODs computed using multi-shell high angular resolution measurements as target. Extensive quantitative evaluations show that the new deep learning method, using significantly fewer measurements, achieves comparable or superior results than standard methods such as Constrained Spherical Deconvolution and two state-of-the-art deep learning methods. For voxels with one and two fibers, respectively, our method shows an agreement rate in terms of the number of fibers of 77.5% and 22.2%, which is 3% and 5.4% higher than other deep learning methods, and an angular error of 10° and 20°, which is 6° and 5° lower than other deep learning methods. To determine baselines for assessing the performance of our method, we compute agreement metrics using densely sampled newborn data. Moreover, we demonstrate the generalizability of the new deep learning method across scanners, acquisition protocols, and anatomy on two clinical external datasets of newborns and fetuses. We validate fetal FODs, successfully estimated for the first time with deep learning, using post-mortem histological data. Our results show the advantage of deep learning in computing the fiber orientation density for the developing brain from in-vivo dMRI measurements that are often very limited due to constrained acquisition times. Our findings also highlight the intrinsic limitations of dMRI for probing the developing brain microstructure.


Asunto(s)
Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética , Feto , Sustancia Blanca , Humanos , Recién Nacido , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/embriología , Feto/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA