Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Cell Physiol ; 234(4): 4681-4694, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30191998

RESUMEN

The heart is highly active metabolically but relatively underperfused and, therefore, vulnerable to ischemia. In addition to acidosis, a key component of ischemia is hypoxia that can modulate gene expression and protein function as part of an adaptive or even maladaptive response. Here, using cardiac-derived HL-1 cells, we investigate the effect of various hypoxic stimuli on the expression and activity of Na+ /H + exchanger 1 (NHE1), a principal regulator of intracellular pH. Acute (10 min) anoxia produced a reversible decrease in the sarcolemmal NHE1 activity attributable to NHE1 internalization. Treatment with either 1% O 2 or dimethyloxaloylglycine (DMOG; 1 mM) for 48-hr stabilized hypoxia-inducible factor 1 and reduced the sarcolemmal NHE1 activity by internalization, but without a change in total NHE1 immunoreactivity or message levels of the coding gene ( SLC9A1) determined in whole-cell lysates. Unlike the effect of DMOG, which was rapidly reversed on washout, reoxygenation after a prolonged period of hypoxia did not reverse the effects on NHE1, unless media were also supplemented with a membrane-permeant derivative of glutathione (GSH). Without a prior hypoxic episode, GSH supplementation had no effect on the NHE1 activity. Thus, posthypoxic NHE1 reinsertion can only take place if cells have a sufficient reservoir of a reducing agent. We propose that oxidative stress under prolonged hypoxia depletes intracellular GSH to an extent that curtails NHE1 reinsertion once the hypoxic stimulus is withdrawn. This effect may be cardioprotective, as rapid postischaemic restoration of the NHE1 activity is known to trigger reperfusion injury by producing an intracellular Na + -overload, which is proarrhythmogenic.


Asunto(s)
Antioxidantes/metabolismo , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Glutatión/metabolismo , Concentración de Iones de Hidrógeno , Factor 1 Inducible por Hipoxia/metabolismo , Cinética , Ratones , Transporte de Proteínas , Intercambiador 1 de Sodio-Hidrógeno/genética
2.
FASEB J ; 32(4): 1969-1981, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29183963

RESUMEN

Most mammalian cells can intercommunicate via connexin-assembled, gap-junctional channels. To regulate signal transmission, connexin (Cx) channel permeability must respond dynamically to physiological and pathophysiological stimuli. One key stimulus is intracellular pH (pHi), which is modulated by a tissue's metabolic and perfusion status. Our understanding of the molecular mechanism of H+ gating of Cx43 channels-the major isoform in the heart and brain-is incomplete. To interrogate the effects of acidic and alkaline pHi on Cx43 channels, we combined voltage-clamp electrophysiology with pHi imaging and photolytic H+ uncaging, performed over a range of pHi values. We demonstrate that Cx43 channels expressed in HeLa or N2a cell pairs are gated biphasically by pHi via a process that consists of activation by H+ ions at alkaline pHi and inhibition at more acidic pHi. For Cx43 channel-mediated solute/ion transmission, the ensemble of these effects produces a pHi optimum, near resting pHi. By using Cx43 mutants, we demonstrate that alkaline gating involves cysteine residues of the C terminus and is independent of motifs previously implicated in acidic gating. Thus, we present a molecular mechanism by which cytoplasmic acid-base chemistry fine tunes intercellular communication and establishes conditions for the optimal transmission of solutes and signals in tissues, such as the heart and brain.-Garciarena, C. D., Malik, A., Swietach, P., Moreno, A. P., Vaughan-Jones, R. D. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication.


Asunto(s)
Conexina 43/metabolismo , Activación del Canal Iónico , Protones , Animales , Comunicación Celular , Conexina 43/química , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Ratones
3.
FASEB J ; 32(1): 83-96, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28883041

RESUMEN

ATP fuels the removal of metabolic end-products, including H+ ions that profoundly modulate biological activities. Energetic resources in hypoxic tumor regions are constrained by low-yielding glycolysis, and any means of reducing the cost of acid extrusion, without compromising pH homeostasis, would therefore be advantageous for cancer cells. Some cancers express connexin channels that allow solute exchange between cells, and we propose that, via this route, normoxic cells supply hypoxic neighbors with acid-neutralizing HCO3- ions. This hypothesis was tested by imaging cytoplasmic pH in spheroidal tissue growths of connexin43-positive pancreatic cancer Colo357 cells during light-controlled H+ uncaging at the hypoxic core. Cytoplasmic acid retention at the core was halved in the presence of CO2/HCO3-, but this process requires a restorative HCO3- flux. The effect of CO2/HCO3- was ablated by connexin43 inhibition or knockdown. In connexin-decoupled spheroids, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), an inhibitor of HCO3- uptake, had no effect on cytoplasmic [H+] in the H+-uncaging region, indicating that DIDS-sensitive transport is not an adequate pH-regulatory strategy therein. With intact connexin-coupling, acid retention at the core increased upon DIDS treatment, indicating that HCO3- ions are taken up actively by peripheral cells and then transmitted passively to cells at the hypoxic core. Thus, the energetic burden of pH regulation is offloaded from hypoxic cells onto metabolically altruistic normoxic neighbors.-Dovmark, T. H., Hulikova, A., Niederer, S. A., Vaughan-Jones, R. D., Swietach, P. Normoxic cells remotely regulate the acid-base balance of cells at the hypoxic core of connexin-coupled tumor growths.


Asunto(s)
Equilibrio Ácido-Base , Neoplasias/metabolismo , Hipoxia Tumoral/fisiología , Adenosina Trifosfato/metabolismo , Bicarbonatos/metabolismo , Línea Celular Tumoral , Conexina 43/antagonistas & inhibidores , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/metabolismo , Metabolismo Energético , Técnicas de Silenciamiento del Gen , Glucólisis , Humanos , Transporte Iónico , Modelos Biológicos , Neoplasias/patología , Oxígeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Esferoides Celulares/metabolismo , Esferoides Celulares/patología
4.
Proc Natl Acad Sci U S A ; 110(22): E2064-73, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23676270

RESUMEN

Ca(2+) signaling regulates cell function. This is subject to modulation by H(+) ions that are universal end-products of metabolism. Due to slow diffusion and common buffers, changes in cytoplasmic [Ca(2+)] ([Ca(2+)]i) or [H(+)] ([H(+)]i) can become compartmentalized, leading potentially to complex spatial Ca(2+)/H(+) coupling. This was studied by fluorescence imaging of cardiac myocytes. An increase in [H(+)]i, produced by superfusion of acetate (salt of membrane-permeant weak acid), evoked a [Ca(2+)]i rise, independent of sarcolemmal Ca(2+) influx or release from mitochondria, sarcoplasmic reticulum, or acidic stores. Photolytic H(+) uncaging from 2-nitrobenzaldehyde also raised [Ca(2+)]i, and the yield was reduced following inhibition of glycolysis or mitochondrial respiration. H(+) uncaging into buffer mixtures in vitro demonstrated that Ca(2+) unloading from proteins, histidyl dipeptides (HDPs; e.g., carnosine), and ATP can underlie the H(+)-evoked [Ca(2+)]i rise. Raising [H(+)]i tonically at one end of a myocyte evoked a local [Ca(2+)]i rise in the acidic microdomain, which did not dissipate. The result is consistent with uphill Ca(2+) transport into the acidic zone via Ca(2+)/H(+) exchange on diffusible HDPs and ATP molecules, energized by the [H(+)]i gradient. Ca(2+) recruitment to a localized acid microdomain was greatly reduced during intracellular Mg(2+) overload or by ATP depletion, maneuvers that reduce the Ca(2+)-carrying capacity of HDPs. Cytoplasmic HDPs and ATP underlie spatial Ca(2+)/H(+) coupling in the cardiac myocyte by providing ion exchange and transport on common buffer sites. Given the abundance of cellular HDPs and ATP, spatial Ca(2+)/H(+) coupling is likely to be of general importance in cell signaling.


Asunto(s)
Adenosina Trifosfato/metabolismo , Señalización del Calcio/fisiología , Citoplasma/metabolismo , Dipéptidos/metabolismo , Histidina/metabolismo , Miocitos Cardíacos/metabolismo , Protones , Animales , Fluorometría , Microscopía Fluorescente , Ratas
5.
Proc Natl Acad Sci U S A ; 110(10): E958-67, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431149

RESUMEN

CO2 is produced abundantly by cardiac mitochondria. Thus an efficient means for its venting is required to support metabolism. Carbonic anhydrase (CA) enzymes, expressed at various sites in ventricular myocytes, may affect mitochondrial CO2 clearance by catalyzing CO2 hydration (to H(+) and HCO3(-)), thereby changing the gradient for CO2 venting. Using fluorescent dyes to measure changes in pH arising from the intracellular hydration of extracellularly supplied CO2, overall CA activity in the cytoplasm of isolated ventricular myocytes was found to be modest (2.7-fold above spontaneous kinetics). Experiments on ventricular mitochondria demonstrated negligible intramitochondrial CA activity. CA activity was also investigated in intact hearts by (13)C magnetic resonance spectroscopy from the rate of H(13)CO3(-) production from (13)CO2 released specifically from mitochondria by pyruvate dehydrogenase-mediated metabolism of hyperpolarized [1-(13)C]pyruvate. CA activity measured upon [1-(13)C]pyruvate infusion was fourfold higher than the cytoplasm-averaged value. A fluorescent CA ligand colocalized with a mitochondrial marker, indicating that mitochondria are near a CA-rich domain. Based on immunoreactivity, this domain comprises the nominally cytoplasmic CA isoform CAII and sarcoplasmic reticulum-associated CAXIV. Inhibition of extramitochondrial CA activity acidified the matrix (as determined by fluorescence measurements in permeabilized myocytes and isolated mitochondria), impaired cardiac energetics (indexed by the phosphocreatine-to-ATP ratio measured by (31)P magnetic resonance spectroscopy of perfused hearts), and reduced contractility (as measured from the pressure developed in perfused hearts). These data provide evidence for a functional domain of high CA activity around mitochondria to support CO2 venting, particularly during elevated and fluctuating respiratory activity. Aberrant distribution of CA activity therefore may reduce the heart's energetic efficiency.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Miocitos Cardíacos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Dióxido de Carbono/metabolismo , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica IV/metabolismo , Compartimento Celular , Citoplasma/metabolismo , Metabolismo Energético , Colorantes Fluorescentes , Concentración de Iones de Hidrógeno , Cinética , Masculino , Mitocondrias Cardíacas/metabolismo , Ratas , Ratas Wistar
6.
J Biol Chem ; 289(37): 25418-30, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25059669

RESUMEN

Carbonic anhydrase (CA) enzymes catalyze the chemical equilibration among CO2, HCO3(-) and H(+). Intracellular CA (CAi) isoforms are present in certain types of cancer, and growing evidence suggests that low levels correlate with disease severity. However, their physiological role remains unclear. Cancer cell CAi activity, measured as cytoplasmic CO2 hydration rate (kf), ranged from high in colorectal HCT116 (∼2 s(-1)), bladder RT112 and colorectal HT29, moderate in fibrosarcoma HT1080 to negligible (i.e. spontaneous kf = 0.18 s(-1)) in cervical HeLa and breast MDA-MB-468 cells. CAi activity in cells correlated with CAII immunoreactivity and enzymatic activity in membrane-free lysates, suggesting that soluble CAII is an important intracellular isoform. CAi catalysis was not obligatory for supporting acid extrusion by H(+) efflux or HCO3(-) influx, nor for maintaining intracellular pH (pHi) uniformity. However, in the absence of CAi activity, acid loading from a highly alkaline pHi was rate-limited by HCO3(-) supply from spontaneous CO2 hydration. In solid tumors, time-dependence of blood flow can result in fluctuations of CO2 partial pressure (pCO2) that disturb cytoplasmic CO2-HCO3(-)-H(+) equilibrium. In cancer cells with high CAi activity, extracellular pCO2 fluctuations evoked faster and larger pHi oscillations. Functionally, these resulted in larger pH-dependent intracellular [Ca(2+)] oscillations and stronger inhibition of the mTORC1 pathway reported by S6 kinase phosphorylation. In contrast, the pHi of cells with low CAi activity was less responsive to pCO2 fluctuations. Such low pass filtering would "buffer" cancer cell pHi from non-steady-state extracellular pCO2. Thus, CAi activity determines the coupling between pCO2 (a function of tumor perfusion) and pHi (a potent modulator of cancer cell physiology).


Asunto(s)
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Transducción de Señal , Bicarbonatos/química , Dióxido de Carbono/química , Anhidrasas Carbónicas/química , Citoplasma/metabolismo , Citoplasma/patología , Células HCT116 , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/patología , Presión Parcial , Protones
7.
J Physiol ; 592(15): 3179-88, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24514908

RESUMEN

Cellular processes are exquisitely sensitive to H+ and Ca2+ ions because of powerful ionic interactions with proteins. By regulating the spatial and temporal distribution of intracellular [Ca2+] and [H+], cells such as cardiac myocytes can exercise control over their biological function. A well-established paradigm in cellular physiology is that ion concentrations are regulated by specialized, membrane-embedded transporter proteins. Many of these couple the movement of two or more ionic species per transport cycle, thereby linking ion concentrations among neighbouring compartments. Here, we compare and contrast canonical membrane transport with a novel type of Ca(2+)-H+ coupling within cytoplasm, which produces uphill Ca2+ transport energized by spatial H+ ion gradients, and can result in the cytoplasmic compartmentalization of Ca2+ without requiring a partitioning membrane. The mechanism, demonstrated in mammalian myocytes, relies on diffusible cytoplasmic buffers, such as carnosine, homocarnosine and ATP, to which Ca2+ and H+ ions bind in an apparently competitive manner. These buffer molecules can actively recruit Ca2+ to acidic microdomains, in exchange for the movement of H+ ions. The resulting Ca2+ microdomains thus have the potential to regulate function locally. Spatial cytoplasmic Ca(2+)-H+ exchange (cCHX) acts like a 'pump' without a membrane and may be operational in many cell types.


Asunto(s)
Antiportadores/metabolismo , Señalización del Calcio , Proteínas de Transporte de Catión/metabolismo , Citoplasma/metabolismo , Animales , Humanos , Miocitos Cardíacos/metabolismo
8.
J Physiol ; 592(5): 991-1007, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24297849

RESUMEN

Carbonic anhydrase enzymes (CAs) catalyse the reversible hydration of CO2 to H+ and HCO3- ions. This catalysis is proposed to be harnessed by acid/base transporters, to facilitate their transmembrane flux activity, either through direct protein-protein binding (a 'transport metabolon') or local functional interaction. Flux facilitation has previously been investigated by heterologous co-expression of relevant proteins in host cell lines/oocytes. Here, we examine the influence of intrinsic CA activity on membrane HCO3- or H+ transport via the native acid-extruding proteins, Na+ -HCO3- cotransport (NBC) and Na+ / H+ exchange (NHE), expressed in enzymically isolated mammalian ventricular myocytes. Effects of intracellular and extracellular (exofacial) CA (CAi and CAe) are distinguished using membrane-permeant and -impermeant pharmacological CA inhibitors, while measuring transporter activity in the intact cell using pH and Na+ fluorophores. We find that NBC, but not NHE flux is enhanced by catalytic CA activity, with facilitation being confined to CAi activity alone. Results are quantitatively consistent with a model where CAi catalyses local H+ ion delivery to the NBC protein, assisting the subsequent (uncatalysed) protonation and removal of imported HCO3- ions. In well-superfused myocytes, exofacial CA activity is superfluous, most likely because extracellular CO2/HCO3- buffer is clamped at equilibrium. The CAi insensitivity of NHE flux suggests that, in the native cell, intrinsic mobile buffer-shuttles supply sufficient intracellular H+ ions to this transporter, while intrinsic buffer access to NBC proteins is restricted. Our results demonstrate a selective CA facilitation of acid/base transporters in the ventricular myocyte, implying a specific role for the intracellular enzyme in HCO3- transport, and hence pHi regulation in the heart.


Asunto(s)
Bicarbonatos/metabolismo , Anhidrasas Carbónicas/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Animales , Bicarbonatos/química , Células Cultivadas , Activación Enzimática , Ventrículos Cardíacos/citología , Concentración de Iones de Hidrógeno , Masculino , Ratas , Ratas Sprague-Dawley
9.
J Mol Cell Cardiol ; 61: 51-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23602948

RESUMEN

Acid extrusion on Na(+)-coupled pH-regulatory proteins (pH-transporters), Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC), drives Na(+) influx into the ventricular myocyte. This H(+)-activated Na(+)-influx is acutely up-regulated at pHi<7.2, greatly exceeding Na(+)-efflux on the Na(+)/K(+) ATPase. It is spatially heterogeneous, due to the co-localisation of NHE1 protein (the dominant pH-transporter) with gap-junctions at intercalated discs. Overall Na(+)-influx via NBC is considerably lower, but much is co-localised with L-type Ca(2+)-channels in transverse-tubules. Through a functional coupling with Na(+)/Ca(2+) exchange (NCX), H(+)-activated Na(+)-influx increases sarcoplasmic-reticular Ca(2+)-loading and release during intracellular acidosis. This raises Ca(2+)-transient amplitude, rescuing it from direct H(+)-inhibition. Functional coupling is biochemically regulated and linked to membrane receptors, through effects on NHE1 and NBC. It requires adequate cytoplasmic Na(+)-mobility, as NHE1 and NCX are spatially separated (up to 60µm). The relevant functional NCX activity must be close to dyads, as it exerts no effect on bulk diastolic Ca(2+). H(+)-activated Na(+)-influx is up-regulated during ischaemia-reperfusion and some forms of maladaptive hypertrophy and heart failure. It is thus an attractive system for therapeutic manipulation. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".


Asunto(s)
Desequilibrio Ácido-Base/metabolismo , Proteínas de Transporte de Catión/fisiología , Acoplamiento Excitación-Contracción , Intercambiadores de Sodio-Hidrógeno/fisiología , Animales , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/fisiología , Protones , Intercambiador 1 de Sodio-Hidrógeno
10.
J Physiol ; 591(9): 2287-306, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23420656

RESUMEN

Membrane acid extrusion by Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC) is essential for maintaining a low cytoplasmic [H(+)] (∼60 nm, equivalent to an intracellular pH (pHi) of 7.2). This protects myocardial function from the high chemical reactivity of H(+) ions, universal end-products of metabolism. We show here that, in rat ventricular myocytes, fluorescent antibodies map the NBC isoforms NBCe1 and NBCn1 to lateral sarcolemma, intercalated discs and transverse tubules (t-tubules), while NHE1 is absent from t-tubules. This unexpected difference matches functional measurements of pHi regulation (using AM-loaded SNARF-1, a pH fluorophore). Thus, myocyte detubulation (by transient exposure to 1.5 m formamide) reduces global acid extrusion on NBC by 40%, without affecting NHE1. Similarly, confocal pHi imaging reveals that NBC stimulation induces spatially uniform pHi recovery from acidosis, whereas NHE1 stimulation induces pHi non-uniformity during recovery (of ∼0.1 units, for 2-3 min), particularly at the ends of the cell where intercalated discs are commonly located, and where NHE1 immunostaining is prominent. Mathematical modelling shows that this induction of local pHi microdomains is favoured by low cytoplasmic H(+) mobility and long H(+) diffusion distances, particularly to surface NHE1 transporters mediating high membrane flux. Our results provide the first evidence for a spatial localisation of [H(+)]i regulation in ventricular myocytes, suggesting that, by guarding pHi, NHE1 preferentially protects gap junctional communication at intercalated discs, while NBC locally protects t-tubular excitation-contraction coupling.


Asunto(s)
Miocitos Cardíacos/fisiología , Sarcolema/fisiología , Simportadores de Sodio-Bicarbonato/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Calcio/fisiología , Capacidad Eléctrica , Femenino , Cobayas , Ventrículos Cardíacos , Concentración de Iones de Hidrógeno , Masculino , Ratas , Ratas Sprague-Dawley
11.
J Cell Physiol ; 228(4): 743-52, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22949268

RESUMEN

Acid-extrusion by active transport is important in metabolically active cancer cells, where it removes excess intracellular acid and sets the intracellular resting pH. Hypoxia is a major trigger of adaptive responses in cancer, but its effect on acid-extrusion remains unclear. We studied pH-regulation under normoxia and hypoxia in eight cancer cell-lines (HCT116, RT112, MDA-MB-468, MCF10A, HT29, HT1080, MiaPaca2, HeLa) using the pH-sensitive fluorophore, cSNARF-1. Hypoxia responses were triggered by pre-incubation in low O(2) or with the 2-oxoglutarate-dependent dioxygenase inhibitor dimethyloxalylglycine (DMOG). By selective pharmacological inhibition or transport-substrate removal, acid-extrusion flux was dissected into components due to Na(+)/H(+) exchange (NHE) and Na(+)-dependent HCO(3)(-) transport. In half of the cell-lines (HCT116, RT112, MDA-MB-468, MCF10A), acid-extrusion on NHE was the dominant flux during an acid load, and in all of these, bar one (MDA-MB-468), NHE-flux was reduced following hypoxic incubation. Further studies in HCT116 cells showed that <4-h hypoxic incubation reduced NHE-flux reversibly with a time-constant of 1-2 h. This was not associated with a change in expression of NHE1, the principal NHE isoform. Following 48-h hypoxia, inhibition of NHE-flux persisted but became only slowly reversible and associated with reduced expression of the glycosylated form of NHE1. Acid-extrusion by Na(+)-dependent HCO(3)(-) transport was hypoxia-insensitive and comparable in all cell lines. This constitutive and stable element of pH-regulation was found to be important for setting and stabilizing resting pH at a mildly alkaline level (conducive for growth), irrespective of oxygenation status. In contrast, the more variable flux on NHE underlies cell-specific differences in their dynamic response to larger acid loads.


Asunto(s)
Hipoxia de la Célula/fisiología , Neoplasias/metabolismo , Ácidos/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Células HCT116 , Células HT29 , Células HeLa , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/patología , Oxígeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/metabolismo
13.
J Biol Chem ; 286(16): 13815-26, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21345798

RESUMEN

Intracellular pH (pH(i)), a major modulator of cell function, is regulated by acid/base transport across membranes. Excess intracellular H(+) ions (e.g. produced by respiration) are extruded by transporters such as Na(+)/H(+) exchange, or neutralized by HCO(3)(-) taken up by carriers such as Na(+)-HCO(3)(-) cotransport. Using fluorescence pH(i) imaging, we show that cancer-derived cell lines (colorectal HCT116 and HT29, breast MDA-MB-468, pancreatic MiaPaca2, and cervical HeLa) extrude acid by H(+) efflux and HCO(3)(-) influx, largely sensitive to dimethylamiloride and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), respectively. The magnitude of HCO(3)(-) influx was comparable among the cell lines and may represent a constitutive element of tumor pH(i) regulation. In contrast, H(+) efflux varied considerably (MDA-MB-468 > HCT116 > HT29 > MiaPaca2 > HeLa). When HCO(3)(-) flux was pharmacologically inhibited, acid extrusion in multicellular HT29 and HCT116 spheroids (∼10,000 cells) was highly non-uniform and produced low pH(i) at the core. With depth, acid extrusion became relatively more DIDS-sensitive because the low extracellular pH at the spheroid core inhibits H(+) flux more than HCO(3)(-) flux. HCO(3)(-) flux inhibition also decelerated HCT116 spheroid growth. In the absence of CO(2)/HCO(3)(-), acid extrusion by H(+) flux in HCT116 and MDA-MB-468 spheroids became highly non-uniform and inadequate at the core. This is because H(+) transporters require extracellular mobile pH buffers, such as CO(2)/HCO(3)(-), to overcome low H(+) ion mobility and chaperone H(+) ions away from cells. CO(2)/HCO(3)(-) exerts a dual effect: as substrate for membrane-bound HCO(3)(-) transporters and as a mobile buffer for facilitating extracellular diffusion of H(+) ions extruded from cells. These processes can be augmented by carbonic anhydrase activity. We conclude that CO(2)/HCO(3)(-) is important for maintaining uniformly alkaline pH(i) in small, non-vascularized tumor growths and may be important for cancer disease progression.


Asunto(s)
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Neoplasias/patología , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Bicarbonatos/química , Transporte Biológico , Tampones (Química) , Línea Celular Tumoral , Difusión , Progresión de la Enfermedad , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Iones , Microscopía Confocal/métodos , Protones , Esferoides Celulares/patología
14.
Curr Biol ; 18(10): 781-785, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18485712

RESUMEN

Extracellular acidification accompanies neoplastic transformation of tissues and increases with tumor aggressiveness [1, 2]. The intracellular signaling cascade triggered by this process remains poorly understood and may be linked to recently discovered proton-activated G protein-coupled receptors such as OGR1 and G2A [3, 4]. Here, we report that OGR1 and G2A are expressed in human medulloblastoma tissue and its corresponding neuronal cell line. We show that extracellular acidification activates phospholipase C, IP(3) formation, and subsequent Ca2+ release from thapsigargin-sensitive stores in neurons. The number of responsive cells and the amount of Ca2+ released from stores correlated positively with the extent of extracellular acidification. Ca2+ release recruited the MEK/ERK pathway, providing a mechanistic explanation for how acidification stimulates cell growth. In addition, acidification activated Ca2+-permeable ion channels through a mechanism dependent on phospholipase C but independent of store depletion or a cytoplasmic Ca2+ rise. Hence, extracellular acidification, to levels seen in tumor tissue, activates temporally and spatially distinct pathways that elevate Ca2+ and may be directly relevant for tumor cell biology.


Asunto(s)
Señalización del Calcio/fisiología , Proteínas de Ciclo Celular/metabolismo , Neoplasias Cerebelosas/metabolismo , Meduloblastoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Líquido Extracelular/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Inositol 1,4,5-Trifosfato/metabolismo , Fosfolipasas de Tipo C/metabolismo
17.
J Physiol ; 588(Pt 24): 4995-5014, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20962000

RESUMEN

Our understanding of pH regulation within red blood cells (RBCs) has been inferred mainly from indirect experiments rather than from in situ measurements of intracellular pH (pH(i)). The present work shows that carboxy-SNARF-1, a pH fluorophore, when used with confocal imaging or flow cytometry, reliably reports pH(i) in individual, human RBCs, provided intracellular fluorescence is calibrated using a 'null-point' procedure. Mean pH(i) was 7.25 in CO(2)/HCO(3)(-)-buffered medium and 7.15 in Hepes-buffered medium, and varied linearly with extracellular pH (slope of 0.77). Intrinsic (non-CO(2)/HCO(3)(-)-dependent) buffering power, estimated in the intact cell (85 mmol (l cell)(-1) (pH unit)(-1) at resting pH(i)), was somewhat higher than previous estimates from cell lysates (50-70 mmol (l cell)(-1) (pH unit)(-1)). Acute displacement of pH(i) (superfusion of weak acids/bases) triggered rapid pH(i) recovery. This was mediated via membrane Cl(-)/HCO(3)(-) exchange (the AE1 gene product), irrespective of whether recovery was from an intracellular acid or base load, and with no evident contribution from other transporters such as Na(+)/H(+) exchange. H(+)-equivalent flux through AE1 was a linear function of [H(+)](i) and reversed at resting pH(i), indicating that its activity is not allosterically regulated by pH(i), in contrast to other AE isoforms. By simultaneously monitoring pH(i) and markers of cell volume, a functional link between membrane ion transport, volume and pH(i) was demonstrated. RBC pH(i) is therefore tightly regulated via AE1 activity, but modulated during changes of cell volume. A comparable volume-pH(i) link may also be important in other cell types expressing anion exchangers. Direct measurement of pH(i) should be useful in future investigations of RBC physiology and pathology.


Asunto(s)
Eritrocitos/fisiología , Protones , Proteína 1 de Intercambio de Anión de Eritrocito/fisiología , Benzopiranos/química , Benzopiranos/metabolismo , Bicarbonatos , Tampones (Química) , Dióxido de Carbono , Cloruros/metabolismo , Fluorescencia , Humanos , Concentración de Iones de Hidrógeno , Naftoles/química , Naftoles/metabolismo , Rodaminas/química , Rodaminas/metabolismo
18.
J Mol Cell Cardiol ; 46(3): 318-31, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19041875

RESUMEN

Intracellular pH (pHi) is an important modulator of cardiac excitation and contraction, and a potent trigger of electrical arrhythmia. This review outlines the intracellular and membrane mechanisms that control pHi in the cardiac myocyte. We consider the kinetic regulation of sarcolemmal H+, OH- and HCO3- transporters by pH, and by receptor-coupled intracellular signalling systems. We also consider how activity of these pHi effector proteins is coordinated spatially in the myocardium by intracellular mobile buffer shuttles, gap junctional channels and carbonic anhydrase enzymes. Finally, we review the impact of pHi regulatory proteins on intracellular Ca2+ signalling, and their participation in clinical disorders such as myocardial ischaemia, maladaptive hypertrophy and heart failure. Such multiple effects emphasise the fundamental role that pHi regulation plays in the heart.


Asunto(s)
Señalización del Calcio , Cardiopatías/metabolismo , Concentración de Iones de Hidrógeno , Contracción Miocárdica , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Uniones Comunicantes/metabolismo , Humanos , Transporte Iónico , Cinética , Proteínas Musculares/biosíntesis
20.
Circ Res ; 100(7): 1045-54, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17363701

RESUMEN

H(+) ions are powerful modulators of cardiac function, liberated during metabolic activity. Among their physiological effects is a chemical gating of cell-to-cell communication, caused by H(+)-mediated closure of connexin (Cx) channels at gap junctions. This protects surrounding tissue from the damaging effects of local intracellular acidosis. Cx proteins (largely Cx-43 in ventricle) form multimeric pores between cells, permitting translocation of ions and other solutes up to approximately 1 kDa. The channels are essential for electrical and metabolic coordination of a tissue. Here we demonstrate that, contrary to expectation, H(+) ions can induce an increase of gap-junctional permeability. This occurs during modest intracellular acid loads in myocyte pairs isolated from mammalian ventricle. We show that the increase in permeability allows a local rise of [H(+)](i) to dissipate into neighboring myocytes, thereby providing a mechanism for spatially regulating intracellular pH (pH(i)). During larger acid loads, the increased permeability is overridden by a more familiar H(+)-dependent inhibition (H(+) inactivation). This restricts cell-to-cell H(+) movement, while allowing sarcolemmal H(+) transporters such as Na(+)/H(+) exchange, to extrude the acid from the cell. The H(+) sensitivity of Cx channels therefore defines whether junctional or sarcolemmal mechanisms are selected locally for the removal of an acid load. The bell-shaped pH dependence of permeability suggests that, in addition to H(+) inactivation, an H(+) activation process regulates the ensemble of Cx channels open at the junction. As well as promoting spatial pH(i) regulation, H(+) activation of junctional permeability may link increased metabolic activity to improved myocardial coupling, the better to meet mechanical demand.


Asunto(s)
Uniones Comunicantes/fisiología , Corazón/fisiología , Miocardio/metabolismo , Protones , Animales , Benzopiranos/farmacocinética , Conexina 43/metabolismo , Impedancia Eléctrica , Colorantes Fluorescentes/farmacocinética , Uniones Comunicantes/metabolismo , Cobayas , Homeostasis , Concentración de Iones de Hidrógeno , Membranas Intracelulares/metabolismo , Canales Iónicos/metabolismo , Modelos Biológicos , Permeabilidad , Ratas , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA