Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(15): 2606-2622, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298627

RESUMEN

Besides the consequences of retrotransposition, long interspersed element 1 (L1) retrotransposons can affect the host genome through their antisense promoter. In addition to the sense promoter, the evolutionarily recent L1 retrotransposons, which are present in several thousand copies, also possess an anti-sense promoter that can produce L1 chimeric transcripts (LCT) composed of the L1 5' UTR followed by the adjacent genomic sequence. The full extent to which LCT expression occurs in a given tissue and whether disruption of the defense mechanisms that normally control L1 retrotransposons affects their expression and function in cancer cells, remain to be established. By using CLIFinder, a dedicated bioinformatics tool, we found that LCT expression was widespread in normal brain and aggressive glioma samples, and that approximately 17% of recent L1 retrotransposons, from the L1PA1 to L1PA7 subfamilies, were involved in their production. Importantly, the transcriptional activities of the L1 antisense promoters and of their host loci were coupled. Accordingly, we detected LCT-producing L1 retrotransposons mainly in transcriptionally active genes and genomic loci. Moreover, changes in the host genomic locus expression level in glioma were associated with a similar change in LCT expression level, regardless of the L1 promoter methylation status. Our findings support a model in which the host genomic locus transcriptional activity is the main driving force of LCT expression. We hypothesize that this model is more applicable when host gene and LCT are transcribed from the same strand.


Asunto(s)
Glioma , Retroelementos , Encéfalo , Glioma/genética , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Regiones Promotoras Genéticas/genética , Retroelementos/genética
2.
Genome Res ; 29(10): 1605-1621, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31533980

RESUMEN

In cancer cells, aberrant DNA methylation is commonly associated with transcriptional alterations, including silencing of tumor suppressor genes. However, multiple epigenetic mechanisms, including polycomb repressive marks, contribute to gene deregulation in cancer. To dissect the relative contribution of DNA methylation-dependent and -independent mechanisms to transcriptional alterations at CpG island/promoter-associated genes in cancer, we studied 70 samples of adult glioma, a widespread type of brain tumor, classified according to their isocitrate dehydrogenase (IDH1) mutation status. We found that most transcriptional alterations in tumor samples were DNA methylation-independent. Instead, altered histone H3 trimethylation at lysine 27 (H3K27me3) was the predominant molecular defect at deregulated genes. Our results also suggest that the presence of a bivalent chromatin signature at CpG island promoters in stem cells predisposes not only to hypermethylation, as widely documented, but more generally to all types of transcriptional alterations in transformed cells. In addition, the gene expression strength in healthy brain cells influences the choice between DNA methylation- and H3K27me3-associated silencing in glioma. Highly expressed genes were more likely to be repressed by H3K27me3 than by DNA methylation. Our findings support a model in which altered H3K27me3 dynamics, more specifically defects in the interplay between polycomb protein complexes and the brain-specific transcriptional machinery, is the main cause of transcriptional alteration in glioma cells. Our study provides the first comprehensive description of epigenetic changes in glioma and their relative contribution to transcriptional changes. It may be useful for the design of drugs targeting cancer-related epigenetic defects.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Glioma/genética , Transcripción Genética , Adulto , Línea Celular Tumoral , Cromatina/genética , Islas de CpG/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glioma/patología , Histonas/genética , Humanos , Isocitrato Deshidrogenasa/genética , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Regiones Promotoras Genéticas
3.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563134

RESUMEN

Glioblastomas represent approximatively half of all gliomas and are the most deadly and aggressive form. Their therapeutic resistance and tumor relapse rely on a subpopulation of cells that are called Glioma Stem Cells (GSCs). Here, we investigated the role of the long non-coding RNA HOXA-AS2 in GSC biology using descriptive and functional analyses of glioma samples classified according to their isocitrate dehydrogenase (IDH) gene mutation status, and of GSC lines. We found that HOXA-AS2 is overexpressed only in aggressive (IDHwt) glioma and GSC lines. ShRNA-based depletion of HOXA-AS2 in GSCs decreased cell proliferation and altered the expression of several hundreds of genes. Integrative analysis revealed that these expression changes were not associated with changes in DNA methylation or chromatin signatures at the promoter of the majority of genes deregulated following HOXA-AS2 silencing in GSCs, suggesting a post-transcriptional regulation. In addition, transcription factor binding motif enrichment and correlation analyses indicated that HOXA-AS2 affects, directly or indirectly, the expression of key transcription factors implicated in GCS biology, including E2F8, E2F1, STAT1, and ATF3, thus contributing to GCS aggressiveness by promoting their proliferation and modulating the inflammation pathway.


Asunto(s)
Glioma , ARN Largo no Codificante , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Humanos , Inflamación/genética , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Bioinformatics ; 34(4): 688-690, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29069308

RESUMEN

Summary: L1 Chimeric Transcripts (LCTs) are initiated by repeated LINE-1 element antisense promoters and include the L1 5'UTR sequence in antisense orientation followed by the adjacent genomic region. LCTs have been characterized mainly using bioinformatics approaches to query dbEST. To take advantage of NGS data to unravel the transcriptome composition, we developed Chimeric LIne Finder (CLIFinder), a new bioinformatics tool. Using stranded paired-end RNA-seq data, we demonstrated that CLIFinder can identify genome-wide transcribed chimera sequences corresponding to potential LCTs. Moreover, CLIFinder can be adapted to study transcription from other repeat types. Availability and implementation: The code is available at: https://github.com/GReD-Clermont/CLIFinder; and for Galaxy users, it is directly accessible in the tool shed at: https://toolshed.g2.bx.psu.edu/view/clifinder/clifinder/. Contact: catherine.barriere@uca.fr. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Perfilación de la Expresión Génica , Genoma Humano , Genómica , Humanos
5.
J Neurooncol ; 135(2): 381-390, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28755323

RESUMEN

Human malignant gliomas exhibit acquisition of either one of two telomere maintenance mechanisms, resulting from either reactivation of telomerase expression or activation of an alternative lengthening of telomeres (ALT) mechanism. In the present study, we analyzed 63 human malignant gliomas for the presence of ALT-specific extrachromosomal circles of telomeric DNA (C-circles) and measured telomerase expression, telomeric DNA content (Telo/Alu method), and telomeric repeat-containing RNAs (TERRA) levels. We also assessed histomolecular markers routinely used in clinical practice. The presence of C-circles significantly correlated with IDH1/2 mutation, MGMT exon 1 methylation, low Ki-67 immunostaining, increased telomeric DNA content, absence of functional ATRX protein and level of HTERT gene expression. In multivariate analysis, we observed a trend to a correlation between elevated TERRA levels and increased survival. Interestingly, the C-circles assay allowed to detect ALT activation in glioblastomas exhibiting wild-type IDH1/2 and ATRX expression. These results suggest that, after the correlations uncovered here have been confirmed on larger numbers of tumors, telomeric markers might be useful in improving diagnosis. They also point out to the utility of using the specific, sensitive and quantitative C-circle and Telo/Alu assays that can work with as few as 30 ng of tumor DNA.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Homeostasis del Telómero , Adulto , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Línea Celular Tumoral , Estudios de Cohortes , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Femenino , Glioma/genética , Glioma/patología , Glioma/cirugía , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Clasificación del Tumor , ARN/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína Nuclear Ligada al Cromosoma X/metabolismo
6.
Carcinogenesis ; 37(2): 169-176, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26717998

RESUMEN

Malignant gliomas are the most common primary brain tumors. Grade III and IV gliomas harboring wild-type IDH1/2 are the most aggressive. In addition to surgery and radiotherapy, concomitant and adjuvant chemotherapy with temozolomide (TMZ) significantly improves overall survival (OS). The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) promoter is predictive of TMZ response and a prognostic marker of cancer outcome. However, the promoter regions the methylation of which correlates best with survival in aggressive glioma and whether the promoter methylation status predictive value could be refined or improved by other MGMT-associated molecular markers are not precisely known. In a cohort of 87 malignant gliomas treated with radiotherapy and TMZ-based chemotherapy, we retrospectively determined the MGMT promoter methylation status, genotyped single nucleotide polymorphisms (SNPs) in the promoter region and quantified MGMT mRNA expression level. Each of these variables was correlated with each other and with the patients' OS. We found that methylation of the CpG sites within MGMT exon 1 best correlated with OS and MGMT expression levels, and confirmed MGMT methylation as a stronger independent prognostic factor compared to MGMT transcription levels. Our main finding is that the presence of only the A allele at the rs34180180 SNP in the tumor was significantly associated with shorter OS, independently of the MGMT methylation status. In conclusion, in the clinic, rs34180180 SNP genotyping could improve the prognostic value of the MGMT promoter methylation assay in patients with aggressive glioma treated with TMZ.


Asunto(s)
Neoplasias Encefálicas/genética , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioma/genética , Polimorfismo de Nucleótido Simple , Proteínas Supresoras de Tumor/genética , Adulto , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Metilación de ADN/genética , Femenino , Genotipo , Glioma/mortalidad , Glioma/patología , Humanos , Estimación de Kaplan-Meier , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Pronóstico , Regiones Promotoras Genéticas/genética , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
7.
Hum Mutat ; 34(7): 1018-25, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23568789

RESUMEN

SLC 16A2, the gene for the second member of the solute carrier family 16 (monocarboxylic acid transporter), located on chromosome Xq13.2, encodes a very efficient thyroid hormone transporter: monocarboxylate transporter 8, MCT8. Its loss of function is responsible in males for a continuum of psychomotor retardation ranging from severe (no motor acquisition, no speech) to mild (ability to walk with help and a few words of speech). Triiodothyronine uptake measurement in transfected cells and, more recently, patient fibroblasts, has been described to study the functional consequences of MCT8 mutations. Here, we describe three novel MCT8 mutations, including one missense variation not clearly predicted to be damaging but found in a severely affected patient. Functional studies in fibroblasts and JEG3 cells demonstrate the usefulness of both cellular models in validating the deleterious effects of a new MCT8 mutation if there is still a doubt as to its pathogenicity. Moreover, the screening of fibroblasts from a large number of patient fibroblasts and of transfected mutations has allowed us to demonstrate that JEG3 transfected cells are more relevant than fibroblasts in revealing a genotype-phenotype correlation.


Asunto(s)
Estudios de Asociación Genética , Transportadores de Ácidos Monocarboxílicos/genética , Mutación , Trastornos Psicomotores/genética , Trastornos Psicomotores/fisiopatología , Adolescente , Línea Celular Tumoral , Células Cultivadas , Niño , Preescolar , Fibroblastos/metabolismo , Humanos , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Índice de Severidad de la Enfermedad , Simportadores , Hormonas Tiroideas/metabolismo
8.
Ann Hum Genet ; 76(3): 261-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22348788

RESUMEN

The SRY-BOX17 gene (SOX17) encodes a transcription factor playing a key role in different developmental processes including endoderm formation, cardiac myogenesis, kidney/urinary development and differentiation of oligodendrocytes, the brain myelinating cells. In a candidate gene approach, we analyzed the SOX17 gene in hypomyelinating leukodystrophies (HL) characterized by a permanent deficit in the amount of central nervous system myelin. Five genes are involved in the aetiology of HL but 40% of HL remains without known genetic origin (UHL). New sequence variations in SOX17 were identified but all correspond to nonpathogenic variants, suggesting that SOX17 is not involved in UHL phenotype. In one patient, we identified the c.775T>A (p.Tyr259Asn) variation already reported as causative of congenital kidney and urinary tract abnormalities (CAKUT). Nevertheless, since our patient did not present such a phenotype, we propose that this variant may alternatively represent an "at-risk" allele for CAKUT rather than a causative allele. This observation strengthens the idea that caution must be taken when linking genetic variation to disease, especially in discrete phenotypes such as CAKUT.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Riñón/anomalías , Factores de Transcripción SOXF/genética , Sistema Urinario/anomalías , Niño , Preescolar , Femenino , Variación Genética , Humanos , Masculino
9.
Mol Oncol ; 15(8): 1995-2010, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33720519

RESUMEN

In human, the 39 coding HOX genes and 18 referenced noncoding antisense transcripts are arranged in four genomic clusters named HOXA, B, C, and D. This highly conserved family belongs to the homeobox class of genes that encode transcription factors required for normal development. Therefore, HOX gene deregulation might contribute to the development of many cancer types. Here, we study HOX gene deregulation in adult glioma, a common type of primary brain tumor. We performed extensive molecular analysis of tumor samples, classified according to their isocitrate dehydrogenase (IDH1) gene mutation status, and of glioma stem cells. We found widespread expression of sense and antisense HOX transcripts only in aggressive (IDHwt) glioma samples, although the four HOX clusters displayed DNA hypermethylation. Integrative analysis of expression, DNA methylation, and histone modification signatures along the clusters revealed that HOX gene upregulation relies on canonical and alternative bivalent CpG island promoters that escape hypermethylation. H3K27me3 loss at these promoters emerges as the main cause of widespread HOX gene upregulation in IDHwt glioma cell lines and tumors. Our study provides the first comprehensive description of the epigenetic changes at HOX clusters and their contribution to the transcriptional changes observed in adult glioma. It also identified putative 'master' HOX proteins that might contribute to the tumorigenic potential of glioma stem cells.


Asunto(s)
Neoplasias Encefálicas/genética , Metilación de ADN , Genes Homeobox , Glioma/genética , Histonas/genética , Regiones Promotoras Genéticas , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioma/enzimología , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Transcripción Genética
10.
Ann Neurol ; 65(1): 114-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19194886

RESUMEN

Pelizaeus-Merzbacher Disease is an X-linked hypomyelinatiing leukodystrophy. We report mutations in the thyroid hormone transporter gene MCT8 in 11% of 53 families affected by hypomyelinating leukodystrophies of unknown aetiology. The 12 MCT8 mutated patients express initially a Pelizaeus-Merzbacher-Like disease phenotype with a latter unusual improvement of magnetic resonance imaging white matter signal despite absence of clinical progression. This observation underlines the interest of determining both free T3 and free T4 serum concentrations to screen for MCT8 mutations in young patients (<3 y) with a severe Pelizaeus-Merzbacher-Like disease presentation or older severe mentally retarded male patients with "hypomyelinated" regions.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos/genética , Mutación/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Encéfalo/patología , Niño , Análisis Mutacional de ADN , Progresión de la Enfermedad , Exones/genética , Salud de la Familia , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vaina de Mielina/patología , Enfermedad de Pelizaeus-Merzbacher/sangre , Enfermedad de Pelizaeus-Merzbacher/patología , Enfermedad de Pelizaeus-Merzbacher/fisiopatología , Simportadores , Tiroxina/sangre , Triyodotironina/sangre
12.
Hum Mutat ; 29(8): 1028-36, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18470932

RESUMEN

The proteolipid protein 1 (PLP1) gene encodes the two major proteins of the central nervous system (CNS) myelin: PLP and DM20. PLP1 gene mutations are associated with a large spectrum of X-linked dysmyelinating disorders ranging from hypomyelinating leukodystrophy, Pelizaeus-Merzbacher disease (PMD), to spastic paraplegia (SPG2) according to the nature of the mutation. Genetic heterogeneity exists and mutations in the gap-junction alpha 12 (GJA12) gene have been related to PMD. About 20% of patients with the PMD phenotype remain without mutation in these two genes and are classified as affected by Pelizaeus-Merzbacher-like disease (PMLD). To study PLP1 splicing abnormalities, we analyzed PLP/DM20 transcripts from nerves and/or skin cultured fibroblasts of 14 PMD/SPG2 patients carrying different PLP1 mutations and 20 PMLD patients. We found that various types of PLP1 mutations result in missplicing, including one considered as a missense in exon 2 and a nucleotide substitution in intron 3 outside the classical donor and acceptor splicing sites. Moreover, we demonstrated for two patients that the fibroblast transcript pattern was in accordance with the one observed in the corresponding CNS/peripheral nervous system (PNS) tissues. Finally, we observed no abnormal splicing in fibroblasts of 20 PMLD patients tested; suggesting that PLP1 gene splicing abnormalities, potentially caused by undetected intronic mutations, are either not involved or are very rarely implicated in the PMLD phenotype. These results confirm that fibroblasts are reliable, accessible cells useful in detecting PLP1 transcript abnormalities, better characterizing the functional consequences of PLP1 mutations for genotype-phenotype correlation, characterizing new PLP1 splicing regulatory elements, and identifying PLP1 mutations undetected by conventional PLP1 screening.


Asunto(s)
Proteína Proteolipídica de la Mielina/genética , Paraplejía/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Empalme del ARN , Secuencia de Aminoácidos , Secuencia de Bases , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Masculino , Datos de Secuencia Molecular , Sitios de Empalme de ARN
14.
Curr Neurol Neurosci Rep ; 8(3): 217-29, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18541117

RESUMEN

Leukodystrophies are a group of orphan genetic diseases that primarily affect the white matter (WM) of the brain. The diagnosis and classification of these pathologies have been improved in the past decade thanks to the development of brain MRI, which allows the diagnosis of WM abnormalities in vivo and the continuous follow-up of patients. This article reviews recent advances made in leukodystrophy research by identifying causative genes. It focuses particularly on the genes involved in the hypomyelinated and vacuolating leukodystrophies, which provide new insights into the understanding of myelin formation and WM homeostasis.


Asunto(s)
Encefalopatías/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Neuroglía/fisiología , Encefalopatías/complicaciones , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/complicaciones , Humanos , Vaina de Mielina/fisiología
15.
Brain Pathol ; 28(5): 611-630, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29027761

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is a fatal hypomyelinating disorder characterized by early impairment of motor development, nystagmus, choreoathetotic movements, ataxia and progressive spasticity. PMD is caused by variations in the proteolipid protein gene PLP1, which encodes the two major myelin proteins of the central nervous system, PLP and its spliced isoform DM20, in oligodendrocytes. Large duplications including the entire PLP1 gene are the most frequent causative mutation leading to the classical form of PMD. The Plp1 overexpressing mouse model (PLP-tg66/66 ) develops a phenotype very similar to human PMD, with early and severe motor dysfunction and a dramatic decrease in lifespan. The sequence of cellular events that cause neurodegeneration and ultimately death is poorly understood. In this work, we analyzed patient-derived fibroblasts and spinal cords of the PLP-tg66/66 mouse model, and identified redox imbalance, with altered antioxidant defense and oxidative damage to several enzymes involved in ATP production, such as glycolytic enzymes, creatine kinase and mitochondrial proteins from the Krebs cycle and oxidative phosphorylation. We also evidenced malfunction of the mitochondria compartment with increased ROS production and depolarization in PMD patient's fibroblasts, which was prevented by the antioxidant N-acetyl-cysteine. Finally, we uncovered an impairment of mitochondrial dynamics in patient's fibroblasts which may help explain the ultrastructural abnormalities of mitochondria morphology detected in spinal cords from PLP-tg66/66 mice. Altogether, these results underscore the link between redox and metabolic homeostasis in myelin diseases, provide insight into the pathophysiology of PMD, and may bear implications for tailored pharmacological intervention.


Asunto(s)
Dinámicas Mitocondriales , Estrés Oxidativo , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Animales , Células Cultivadas , Niño , Preescolar , ADN Mitocondrial , Fibroblastos/metabolismo , Fibroblastos/patología , Ácido Glutámico/metabolismo , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Enfermedad de Pelizaeus-Merzbacher/patología , ARN Mensajero/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología
16.
Mol Endocrinol ; 28(12): 1961-70, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25389909

RESUMEN

Monocarboxylate transporter 8 (MCT8) transports thyroid hormone (TH) across the plasma membrane. Mutations in MCT8 result in the Allan-Herndon-Dudley syndrome, comprising severe psychomotor retardation and elevated serum T3 levels. Because the neurological symptoms are most likely caused by a lack of TH transport into the central nervous system, the administration of a TH analog that does not require MCT8 for cellular uptake may represent a therapeutic strategy. Here, we investigated the therapeutic potential of the biologically active T3 metabolite Triac (TA3) by studying TA3 transport, metabolism, and action both in vitro and in vivo. Incubation of SH-SY5Y neuroblastoma cells and MO3.13 oligodendrocytes with labeled substrates showed a time-dependent uptake of T3 and TA3. In intact SH-SY5Y cells, both T3 and TA3 were degraded by endogenous type 3 deiodinase, and they influenced gene expression to a similar extent. Fibroblasts from MCT8 patients showed an impaired T3 uptake compared with controls, whereas TA3 uptake was similar in patient and control fibroblasts. In transfected cells, TA3 did not show significant transport by MCT8. Most importantly, treatment of athyroid Pax8-knockout mice and Mct8/Oatp1c1-double knockout mice between postnatal days 1 and 12 with TA3 restored T3-dependent neural differentiation in the cerebral and cerebellar cortex, indicating that TA3 can replace T3 in promoting brain development. In conclusion, we demonstrated uptake of TA3 in neuronal cells and in fibroblasts of MCT8 patients and similar gene responses to T3 and TA3. This indicates that TA3 bypasses MCT8 and may be used to improve the neural status of MCT8 patients.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/tratamiento farmacológico , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Hipotonía Muscular/tratamiento farmacológico , Hipotonía Muscular/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Triyodotironina/análogos & derivados , Animales , Transporte Biológico/efectos de los fármacos , Células COS , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Humanos , Técnicas In Vitro , Proteínas de Transporte de Membrana , Ratones , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Simportadores , Triyodotironina/genética , Triyodotironina/metabolismo , Triyodotironina/uso terapéutico
18.
Nat Protoc ; 8(12): 2538-47, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24263093

RESUMEN

RNA in situ hybridization (ISH) has been widely used in cell and developmental biology research to study gene expression. Classical ISH protocols use colorimetric staining approaches, such as the assay with nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP), which do not allow the implementation of multiple probe analyses and do not enable investigators to achieve cellular resolution. Here we describe a protocol to determine the presence of target cytoplasmic RNA via cytoplasmic fluorescence ISH (cFISH), an approach that renders possible the visualization of specific RNA strands from the whole tissue down to the cell. This fluorescence technique, adapted here for use in mouse embryos, enables researchers to implement multiple labeling by combining several RNA probes and/or antibodies in immuno-cFISH. Depending on the options chosen, the protocol can be completed within 2 or 3 d.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , ARN Mensajero/análisis , Animales , Citoplasma/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/ultraestructura , Ratones , ARN Mensajero/metabolismo
19.
J Neurol Sci ; 312(1-2): 123-6, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21872273

RESUMEN

Sjogren-Larsson syndrome (SLS) is a rare autosomal recessive disorder characterized by ichthyosis, spastic di- or tetraplegia and mental retardation due a defect of the fatty aldehyde dehydrogenase (FALDH), related to mutations in the ALDH3A2 gene. In this study, we screened a French cohort of patients with Sjögren-Larsson syndrome (SLS) for mutations in the ALDH3A2 gene. The five unrelated patients with typical SLS all present mutations in this gene. Three novel mutations were identified whereas three other ones were previously described. We also realized functional analyses at the mRNA level for two splice site mutations to study their deleterious consequences. Two of the previously described mutations had already been identified in the same region of Europe, suggesting a putative founder effect. We suggest that, (1) when clinical and MR features are present, direct sequencing of the ALDH3A2 gene in SLS is of particular interest without necessity of a skin biopsy for enzymatic assay in order to propose genetic counsel and (2) identification of mutations already described in the same population with putative founder effects may simplify genetic analysis in this context.


Asunto(s)
Aldehído Oxidorreductasas/genética , Mutación Puntual/genética , Síndrome de Sjögren-Larsson/genética , Adolescente , Niño , Estudios de Cohortes , Femenino , Francia , Humanos , Lactante , Masculino , Radiografía , Síndrome de Sjögren-Larsson/diagnóstico por imagen , Síndrome de Sjögren-Larsson/patología
20.
Orphanet J Rare Dis ; 6: 40, 2011 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-21679407

RESUMEN

BACKGROUND: The breadth of the clinical spectrum underlying Pelizaeus-Merzbacher disease and spastic paraplegia type 2 is due to the extensive allelic heterogeneity in the X-linked PLP1 gene encoding myelin proteolipid protein (PLP). PLP1 mutations range from gene duplications of variable size found in 60-70% of patients to intragenic lesions present in 15-20% of patients. METHODS: Forty-eight male patients from 38 unrelated families with a PLP1-related disorder were studied. All DNA samples were screened for PLP1 gene duplications using real-time PCR. PLP1 gene sequencing analysis was performed on patients negative for the duplication. The mutational status of all 14 potential carrier mothers of the familial PLP1 gene mutation was determined as well as 15/24 potential carrier mothers of the PLP1 duplication. RESULTS AND CONCLUSIONS: PLP1 gene duplications were identified in 24 of the unrelated patients whereas a variety of intragenic PLP1 mutations were found in the remaining 14 patients. Of the 14 different intragenic lesions, 11 were novel; these included one nonsense and 7 missense mutations, a 657-bp deletion, a microdeletion and a microduplication. The functional significance of the novel PLP1 missense mutations, all occurring at evolutionarily conserved residues, was analysed by the MutPred tool whereas their potential effect on splicing was ascertained using the Skippy algorithm and a neural network. Although MutPred predicted that all 7 novel missense mutations would be likely to be deleterious, in silico analysis indicated that four of them (p.Leu146Val, p.Leu159Pro, p.Thr230Ile, p.Ala247Asp) might cause exon skipping by altering exonic splicing elements. These predictions were then investigated in vitro for both p.Leu146Val and p.Thr230Ile by means of RNA or minigene studies and were subsequently confirmed in the case of p.Leu146Val. Peripheral neuropathy was noted in four patients harbouring intragenic mutations that altered RNA processing, but was absent from all PLP1-duplication patients. Unprecedentedly, family studies revealed the de novo occurrence of the PLP1 duplication at a frequency of 20%.


Asunto(s)
Duplicación de Gen , Proteína Proteolipídica de la Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Paraplejía Espástica Hereditaria/genética , Adolescente , Niño , Preescolar , ADN/genética , Humanos , Lactante , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA