Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Clin Nutr Metab Care ; 27(4): 372-377, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456815

RESUMEN

PURPOSE OF REVIEW: This review provides the latest insight into the impact of consuming plant-based protein for older people. RECENT FINDINGS: According to the latest data, a healthy diet rich in plant-based-protein-rich-food could promote healthy aging. This health effect is partly because of the amino acid composition of proteins, as well as to the important constituents such as fiber and bioactive compounds found in the matrix. Furthermore, even though animal protein is more effective at stimulating muscle protein synthesis, a high consumption of plant protein (beyond 31 g/day) appears to enhance physical performance and reduce the risk of frailty in older individuals. SUMMARY: Recent literature highlights numerous health benefits for older people associated with a substantial intake of plant-based vs. animal-based protein, both in preventing and mitigating chronic age-related diseases and reducing the risk of all-cause mortality. However, a high intake of plant-based protein-rich products could pose risks of malnutrition and fiber-related intestinal intolerances. Further research is needed to assess the risk-benefit ratio of a high consumption of plant proteins in older individuals before we can make robust recommendations on how far animal proteins can be healthfully replaced with plant proteins.


Asunto(s)
Proteínas Dietéticas Animales , Anciano , Humanos , Envejecimiento , Proteínas Dietéticas Animales/administración & dosificación , Dieta Saludable/métodos , Fibras de la Dieta , Proteínas en la Dieta/administración & dosificación , Fragilidad/prevención & control , Envejecimiento Saludable , Proteínas de Vegetales Comestibles/administración & dosificación
2.
Br J Nutr ; 127(9): 1320-1333, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34462019

RESUMEN

We investigated the impact of increased alpha-linolenic acid (ALA) dietary levels on its plasma bioavailability and its bioconversion in n-3 long chain poly unsaturated fatty acids during a 60-d kinetics and the oxidative stress potentially associated. Rats were submitted to a normolipidic diet providing 0, 3, 10 and 24% ALA of dietary lipids for 0, 15, 30 and 60 days. The lipid peroxidation and oxidative stress (nitric oxide (NO) contents and catalase (CAT), superoxide dismutase (SOD), gluthation peroxidase (GPx) activities) were studied in the liver and plasma. When the diet was deprived in n-3 PUFAs, ALA, (eicosanoic acid) EPA and docosahexaenoic acid (DHA) levels decreased in all lipid fractions of plasma and in red blood cell (RBC) lipids. The addition of ALA in the diet linearly improves its bioavailability and its bioconversion in EPA (R²=0.98). By providing 10 to 24% ALA in dietary lipids (LA/ALA, 1·6 and 5·5 respectively), ALA and EPA were more broadly packaged in all lipid fractions (triglyceride (TAG), cholesterol ester (CE) and free fatty acids (FFA)) of plasma from 15 to 30 days timeframe. Only 3% ALA was sufficient to promote the maximal bioconversion of ALA in DHA in phospholipid (PL) and TAG fractions. Additionally, the improvement of ALA bioconversion in EPA and DHA did not impact the oxidative stress markers and limiting lipid peroxidation. To conclude, this study demonstrated that in rat, 10% ALA in the lipid diet for 15-30 days promotes its bioavailability and its bioconversion and allowed the greatest levels in plasma and RBCs.


Asunto(s)
Ácidos Grasos Omega-3 , Ratas , Animales , Ácido alfa-Linolénico , Disponibilidad Biológica , Ácidos Docosahexaenoicos , Dieta , Estrés Oxidativo , Antioxidantes , Ácido Eicosapentaenoico
3.
J Nutr ; 150(11): 2900-2911, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32937654

RESUMEN

BACKGROUND: Soybean lecithin, a plant-based emulsifier widely used in food, is capable of modulating postprandial lipid metabolism. With arising concerns of sustainability, alternative sources of vegetal lecithin are urgently needed, and their metabolic effects must be characterized. OBJECTIVES: We evaluated the impact of increasing doses of rapeseed lecithin (RL), rich in essential α-linolenic acid (ALA), on postprandial lipid metabolism and ALA bioavailability in lymph-cannulated rats. METHODS: Male Wistar rats (8 weeks old) undergoing a mesenteric lymph duct cannulation were intragastrically administered 1 g of an oil mixture containing 4% ALA and 0, 1, 3, 10, or 30% RL (5 groups). Lymph fractions were collected for 6 h. Lymph lipids and chylomicrons (CMs) were characterized. The expression of genes implicated in intestinal lipid metabolism was determined in the duodenum at 6 h. Data was analyzed using either sigmoidal or linear mixed-effects models, or one-way ANOVA, where appropriate. RESULTS: RL dose-dependently increased the lymphatic recovery (AUC) of total lipids (1100 µg/mL·h per additional RL%; P = 0.010) and ALA (50 µg/mL·h per additional RL%; P = 0.0076). RL induced a faster appearance of ALA in lymph, as evidenced by the exponential decrease of the rate of appearance of ALA with RL (R2 = 0.26; P = 0.0064). Although the number of CMs was unaffected by RL, CM diameter was increased in the 30%-RL group, compared to the control group (0% RL), by 86% at 3-4 h (P = 0.065) and by 81% at 4-6 h (P = 0.0002) following administration. This increase was positively correlated with the duodenal mRNA expression of microsomal triglyceride transfer protein (Mttp; ρ= 0.63; P = 0.0052). The expression of Mttp and secretion-associated, ras-related GTPase 1 gene homolog B (Sar1b, CM secretion), carnitine palmitoyltransferase IA (Cpt1a) and acyl-coenzyme A oxidase 1 (Acox1, beta-oxidation), and fatty acid desaturase 2 (Fads2, bioconversion of ALA into long-chain n-3 PUFAs) were, respectively, 49%, 29%, 74%, 48%, and 55% higher in the 30%-RL group vs. the control group (P < 0.05). CONCLUSIONS: In rats, RL enhanced lymphatic lipid output, as well as the rate of appearance of ALA, which may promote its subsequent bioavailability and metabolic fate.


Asunto(s)
Brassica napus/química , Lecitinas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Linfa/química , Linfa/metabolismo , Ácido alfa-Linolénico/metabolismo , Animales , Disponibilidad Biológica , Lecitinas/química , Ratas , Ácido alfa-Linolénico/química
4.
Brain Behav Immun ; 84: 23-35, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31731013

RESUMEN

Metabolic syndrome represents a major risk factor for severe comorbidities such as cardiovascular diseases or diabetes. It is also associated with an increased prevalence of emotional and cognitive alterations that in turn aggravate the disease and related outcomes. Identifying therapeutic strategies able to improve those alterations is therefore a major socioeconomical and public health challenge. We previously reported that both hippocampal inflammatory processes and neuronal plasticity contribute to the development of emotional and cognitive alterations in db/db mice, an experimental model of metabolic syndrome that displays most of the classical features of the syndrome. In that context, nutritional interventions with known impact on those neurobiological processes appear as a promising alternative to limit the development of neurobiological comorbidities of metabolic syndrome. We therefore tested here whether n-3 polyunsaturated fatty acids (n-3 PUFAs) associated with a cocktail of antioxidants can protect against the development of behavioral alterations that accompany the metabolic syndrome. Thus, this study aimed: 1) to evaluate if a diet supplemented with the plant-derived n-3 PUFA α-linolenic acid (ALA) and antioxidants (provided by n-3 PUFAs-rich rapeseed oil fortified with a mix of naturally constituting antioxidant micronutrients, including coenzyme Q10, tocopherol, and the phenolic compound canolol) improved behavioral alterations in db/db mice, and 2) to decipher the biological mechanisms underlying this behavioral effect. Although the supplemented diet did not improve anxiety-like behavior and inflammatory abnormalities, it reversed hippocampus-dependent spatial memory deficits displayed by db/db mice in a water maze task. It concomitantly changed subunit composition of glutamatergic AMPA and NMDA receptors in the hippocampus that has been shown to modulate synaptic function related to spatial memory. These data suggest that changes in local neuronal plasticity may underlie cognitive improvements in db/db mice fed the supplemented diet. The current findings might therefore provide valuable data for introducing new nutritional strategies for the treatment of behavioral complications associated with MetS.


Asunto(s)
Trastornos del Conocimiento/dietoterapia , Cognición/efectos de los fármacos , Alimentos Fortificados , Síndrome Metabólico/dietoterapia , Micronutrientes/farmacología , Aceite de Brassica napus/química , Aceite de Brassica napus/farmacología , Animales , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/fisiopatología , Modelos Animales de Enfermedad , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/fisiopatología , Ratones
5.
Br J Nutr ; 122(6): 639-647, 2019 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-31230605

RESUMEN

The aim of this work was to study the bioavailability of fatty acids (FA), focusing on n-3 long-chain (LC) PUFA, carried by different molecular lipid species, that is, phospholipids (PL) or TAG, with three formulations based on fish oils or marine PL, providing a similar n-3 LC PUFA amount. The digestive lipolysis was first assessed using an in vitro enzymatic model. Then, intestinal absorption and enterocyte metabolism were investigated in vivo, on male Wistar rats through lymph lipid analysis. The in vitro results showed that the release of n-3 LC PUFA from lipolysis was increased by 48 % when FA were provided as PL rather than TAG. The in vivo results demonstrated that EPA and DHA from both TAG and PL were similarly absorbed and incorporated into lymph lipids. However, DHA was mainly distributed at the sn-1/3 positions of lymph TAG when provided as marine PL, whereas it was equally distributed at the three positions with marine TAG. On the whole, even if the molecular lipid species of n-3 LC PUFA did not greatly modify the in vivo digestion and absorption steps, it modulated the rearrangement of DHA on the glyceride positions of the lymph TAG, which may further impact the DHA metabolic fate and tissue accretion. Consequently, the present study has provided data which may be used to formulate lipid diets rich in DHA in the context of an insufficient consumption of n-3 PUFA in Western countries.


Asunto(s)
Ácidos Grasos Omega-3/farmacocinética , Lipólisis , Tejido Linfoide/metabolismo , Animales , Disponibilidad Biológica , Técnicas In Vitro , Masculino , Ratas , Ratas Wistar
6.
Br J Nutr ; 112(11): 1805-18, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25331622

RESUMEN

n-3 Long-chain PUFA (n-3 LC-PUFA), particularly EPA and DHA, play a key role in the maintenance of brain functions such as learning and memory that are impaired during ageing. Ageing is also associated with changes in the DHA content of brain membranes that could contribute to memory impairment. Limited studies have investigated the effects of ageing and n-3 LC-PUFA supplementation on both blood and brain fatty acid compositions. Therefore, we assessed the relationship between fatty acid contents in plasma and erythrocyte membranes and those in the hippocampus, striatum and cerebral cortex during ageing, and after a 5-month period of EPA/DHA supplementation in rats. In the blood, ageing was associated with an increase in plasma DHA content, whereas the DHA content remained stable in erythrocyte membranes. In the brain, ageing was associated with a decrease in DHA content, which was both region-specific and phospholipid class-specific. In EPA/DHA-supplemented aged rats, DHA contents were increased both in the blood and brain compared with the control rats. The present results demonstrated that n-3 LC-PUFA level in the plasma was not an accurate biomarker of brain DHA status during ageing. Moreover, we highlighted a positive relationship between the DHA levels in erythrocyte phosphatidylethanolamine (PE) and those in the hippocampus and prefrontal cortex in EPA/DHA-supplemented aged rats. Within the framework of preventive dietary supplementation to delay brain ageing, these results suggest the possibility of using erythrocyte PE DHA content as a reliable biomarker of DHA status in specific brain regions.


Asunto(s)
Envejecimiento/sangre , Envejecimiento/metabolismo , Encéfalo/metabolismo , Ácidos Docosahexaenoicos/sangre , Envejecimiento/psicología , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Membrana Eritrocítica/efectos de los fármacos , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Hipocampo/metabolismo , Masculino , Memoria/fisiología , Fosfatidilcolinas/sangre , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/sangre , Fosfatidiletanolaminas/metabolismo , Ratas , Ratas Wistar
7.
Food Funct ; 15(5): 2366-2380, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38372388

RESUMEN

This review focuses on the potential use, nutritional value and beneficial health effects of oilseeds as a source of food protein. The process of extracting oil from oilseeds produces a by-product that is rich in proteins and other valuable nutritional and bioactive components. This product is primarily used for animal feed. However, as the demand for proteins continues to rise, plant-based proteins have a real success in food applications. Among the different plant protein sources, oilseeds could be used as an alternative protein source for human diet. The data we have so far show that oilseeds present a protein content of up to 40% and a relatively well-balanced profile of amino acids with sulphur-containing amino acids. Nevertheless, they tend to be deficient in lysine and rich in anti-nutritional factors (ANFs), which therefore means they have lower anabolic potential than animal proteins. To enhance their nutritional value, oilseed proteins can be combined with other protein sources and subjected to processes such as dehulling, heating, soaking, germination or fermentation to reduce their ANFs and improve protein digestibility. Furthermore, due to their bioactive peptides, oilseeds can also bring health benefits, particularly in the prevention and treatment of diabetes, obesity and cardiovascular diseases. However, additional nutritional data are needed before oilseeds can be endorsed as a protein source for humans.


Asunto(s)
Alimentación Animal , Dieta , Animales , Humanos , Alimentación Animal/análisis , Estado Nutricional , Aminoácidos , Proteínas de Plantas
8.
Nutrition ; 121: 112358, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38401197

RESUMEN

INTRODUCTION: Nutritional intake and dysregulation of fatty acid metabolism play a role in the progression of various tumors, but the consumption of fatty acids is difficult to assess accurately with dietary questionnaires. Biomarkers can objectively assess intake, storage and bioavailability. OBJECTIVE: We studied the association between the polyunsaturated fatty acid (PUFA) composition of abdominal subcutaneous adipose tissue (good indicator of dietary intake over 2-3 years) and all-cause mortality. METHODS: In the multicenter AGARIC study, samples from 203 patients with colorectal cancer (CRC) undergoing curative surgery, were harvested from subcutaneous adipose tissue, which were then analyzed for PUFA composition. RESULTS: After a median follow-up of 45 months, 76 patients died. These patients were more often men (72.4% versus 57.5%, P = 0.04), diabetic (32.9% versus 13.4%, P = 0.001), old (median: 74.5 versus 66.6 years, P < 0.001) and with high alcohol consumption (47.4% versus 30.7%, P = 0.005). An increased risk of death was observed with higher levels of 20:2 ω-6 (hazard ratiotertile3 vstertile1 (HRT3vsT1) 2.12; 95% confidence interval (CI) 1.01-4.42; p-trend = 0.04), 22:4 ω-6 (HRT3vsT1 = 3.52; 95% CI = 1.51-8.17; p-trend = 0.005), and 22:5 ω-6 (HRT3vsT1 = 3.50; 95% CI = 1.56-7.87; p-trend = 0.002). Conversely, the risk of death seemed lower when higher concentrations of 18:3 ω-6 (HRT3vsT1 = 0.52; 95% CI = 0.27-0.99; p-trend = 0.04) and the essential fatty acid, α-linolenic acid 18:3 ω-3 (HRT3vsT1 = 0.47; 95% CI = 0.24-0.93; p-trend = 0.03) were observed. CONCLUSION: The risk of death was increased in CRC patients with higher concentrations of certain ω-6 PUFAs and lower concentrations of α-linolenic acid in their subcutaneous adipose tissue. These results reflect dietary habits and altered fatty acid metabolism. Our exploratory results warrant confirmation in larger studies with further exploration of the mechanisms involved.


Asunto(s)
Neoplasias Colorrectales , Ácidos Grasos Omega-3 , Masculino , Humanos , Ácido alfa-Linolénico , Ácidos Grasos Insaturados , Ácidos Grasos , Tejido Adiposo , Neoplasias Colorrectales/cirugía
9.
Metabolites ; 14(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38668318

RESUMEN

The therapeutic effects of saffron have been reported and described in relation to its major derivatives. Among them, in terms of saffron's properties, crocin and crocetin absorption and bioavailability have been the most studied. Nevertheless, the metabolism of these major compounds of saffron has not yet been entirely elucidated. Current data indicate that the phase 2 metabolism of crocetins go through conjugation reactions. Crocetins could also be present in isomeric forms such as other carotenoids. Nonetheless, there are still shadow areas in regard to the measurements of the different circulating forms of crocetins after oral saffron extract administration (Safr'Inside™). In using various approaches, we propose the identification of a new cis isomeric form of crocetin, the 6-cis-crocetin. This compound was found in human serum samples after an oral administration of saffron extract. The 6-cis-crocetin represents 19% of the total crocetin measured after 45 min of consumption. These data mark, for the first time, the presence of a cis isomeric form of crocetin in human serum samples. Moreover, this study led to the development of an analytical method that is able to identify and quantify both isomeric forms (trans and cis).

10.
Nutrients ; 16(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613047

RESUMEN

Docosahexaenoic acid (DHA) is an essential fatty acid (FA) with proven pro-health effects, but improving its bioavailability is becoming a public health issue. The bioavailability of DHA from microalgal (A) oil has been comprehensively assessed, particularly in terms of the molecular structuring capabilities offered by A-oil. Here, we explored the impact of five DHA-rich formulas differing in terms of (i) molecular structure, i.e., ethyl ester (EE), monoglyceride (MG), or triglyceride (TG), and (ii) supramolecular form, i.e., emulsified TG or TG + phospholipids (PL blend) on the lymphatic kinetics of DHA absorption and the lipid characteristics of the resulting lipoproteins. We demonstrated in rats that the conventional A-DHA TG structure afforded more effective DHA absorption than the EE structure (+23%). Furthermore, the A-DHA MG and A-DHA emulsions were the better DHA vectors (AUC: 89% and +42%, respectively) due to improved lipolysis. The A-DHA MG and A-DHA emulsion presented the richest DHA content in TG (+40%) and PL (+50%) of lymphatic chylomicrons, which could affect the metabolic fate of DHA. We concluded that structuring A-DHA in TG or EE form would better serve for tissue and hepatic metabolism whereas A-DHA in MG and emulsion form could better target nerve tissues.


Asunto(s)
Ácidos Docosahexaenoicos , Microalgas , Animales , Ratas , Disponibilidad Biológica , Emulsiones , Glicéridos , Examen Físico , Triglicéridos , Ésteres
11.
Pharmaceutics ; 16(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38543230

RESUMEN

Safe and anti-inflammatory plant-based natural products present an increasing focus in the treatment of chronic inflammatory diseases such as osteoarthritis or inflammatory bowel diseases. Among them, saffron, a spice derived from the stigma of Crocus sativus, could have anti-inflammatory properties and would be therefore a promising therapeutic agent for the treatment of such conditions. However, the anti-inflammatory molecular mechanisms of saffron in humans are still understudied and unclear. In this study, combining human serum metabolites and cell cultures, we evaluated the effect of circulating metabolites from the consumption of a patented saffron extract (Safr'InsideTM) on the chondrocytes and colon epithelial cell responses to inflammatory stress. Parametric or non-parametric Analysis of Variance with post hoc tests was performed. We demonstrated that human serum containing metabolites from saffron intake attenuated IL-1ß-stimulated production of PGE2 and MMP-13 in chondrocyte cells and limited the increase in ICAM-1, MCP-1, iNOS, and MMP-3 in human epithelial cells following combined IL-1ß and TNF-α inflammatory stimulation. Altogether, these data provide new findings into the mechanisms underlying the beneficial effects of saffron on chondrocytes and enterocyte cells at the cellular level and in the context of chronic inflammatory disorders.

12.
J Lipid Res ; 54(9): 2559-67, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23801662

RESUMEN

The main risk factors for Alzheimer's disease, age and the ε4 allele of the APOE gene (APOE4), might modify the metabolism of n-3 PUFAs and in turn, their impact on cognition. The aim of this study was to investigate the association between dietary fat and plasma concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in elderly persons, taking the APOE4 genotype into account. The sample was composed of 1,135 participants from the Three-City study aged 65 years and over, of whom 19% were APOE4 carriers. Mean plasma proportions of EPA [1.01%, standard deviation (SD) 0.60] and DHA (2.41%, SD 0.81) did not differ according to APOE4. In multivariate models, plasma EPA increased with frequency of fish consumption (P < 0.0001), alcohol intake (P = 0.0006), and female gender (P = 0.02), and decreased with intensive consumption of n-6 oils (P = 0.02). The positive association between fish consumption and plasma DHA was highly significant whatever the APOE genotype (P < 0.0001) but stronger in APOE4 noncarriers than in carriers (P = 0.06 for interaction). Plasma DHA increased significantly with age (P = 0.009) in APOE4 noncarriers only. These findings suggest that dietary habits, gender, and APOE4 genotype should be considered when designing interventions to increase n-3 PUFA blood levels in older people.


Asunto(s)
Apolipoproteínas E/genética , Dieta , Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/sangre , Genotipo , Anciano , Femenino , Humanos , Masculino , Análisis Multivariante , Características de la Residencia/estadística & datos numéricos
13.
J Nutr ; 142(1): 70-5, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22131546

RESUMEN

Little is known about the ability of α-linolenic acid (Ln) to remain in the sn-2 position of TG during the absorption process. The goal of this study was to determine the Ln distribution in the lymph (Study 1) and plasma (Study 2) TG of rats fed a single i.g. load of structured TG [300 mg/rat of either oleic acid (O)/Ln/O TG (OLnO) or Ln/O/O TG (LnOO), n = 7 rats]. In an early fraction (3-4 h) of lymph (OLnO group; 100% Ln in the sn-2 position), 46 ± 2% Ln was maintained in this position in lymph TG. There was even less (29 ± 6%) in the last fraction (7-24 h) (P < 0.05). Ln was also found (9 ± 3%) in the sn-2 position of lymph TG in the LnOO group. The Ln content in lymph phospholipids was twice as high in rats when they were fed LnOO (4.2 ± 0.1%) than OLnO (2.3 ± 0.2%) (P < 0.005). Six hours postprandially (Study 2), 21 ± 3% of the Ln incorporated into plasma TG was located in the sn-2 position in the OLnO group compared to 13 ± 2% in the LnOO group (P < 0.001). Overall, these results indicate that the amount of Ln that moved from the sn-2 position of structured TG to the sn-1(3) position of lymph TG increased during absorption. This may account for a substantial hydrolysis of the 2-monolinolenylglycerols in enterocytes, leading to the intramolecular redistribution of Ln in lymph TG and, consequently, in plasma TG.


Asunto(s)
Quilomicrones/metabolismo , Metabolismo de los Lípidos , Linfa/metabolismo , Triglicéridos/química , Ácido alfa-Linolénico/análisis , Animales , Masculino , Ratas , Ratas Wistar , Triglicéridos/sangre , Triglicéridos/metabolismo , Ácido alfa-Linolénico/metabolismo
14.
Biomolecules ; 12(7)2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35883531

RESUMEN

Lipid emulsification is a technique that is being explored for improving the bioavailability of omega 3 (n-3) long chain (LC) fatty acid (FA). The nature of the emulsifiers can differently impact the lipid bioavailability via a modification of the lipolysis step. Among natural emulsifiers, gum acacia (GA), an indigestible polysaccharide, provides protective encapsulation of n-3 by forming a specifically crown-like shape around lipid drops, which could also impact the digestion step. Despite the interest in lipolysis rate, the impact of GA on lipid bioavailability has never been explored in a complete physiological context. Thus, we followed in a kinetics study the n-3 bioavailability in rat lymph, orally administered DHA-rich oil, formulated based on GA compared to the bulk phase form of the oil. The AUC values were significantly improved by +121% for total TG and by 321% for n-3 PUFA, specifically for EPA (+244%) and for DHA (+345%). Benefits of GA have also been related to the transport of FA in lymph, which was 2 h earlier (Tmax = 4 h), compared to the Tmax (6 h) obtained with the bulk phase oil. All the data showed that GA is one of the most favorable candidates of natural emulsifiers to improve n-3 bioavailability and their rate of absorption for health targets.


Asunto(s)
Ácidos Grasos Omega-3 , Animales , Disponibilidad Biológica , Ácidos Docosahexaenoicos , Ácidos Grasos , Aceites de Pescado , Goma Arábiga , Ratas
15.
Biochimie ; 203: 106-117, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35041857

RESUMEN

The specific activities of gastric and pancreatic lipases were measured using triacylglycerols (TAG) from rapeseed oil, purified 1,3-sn-DAG and 1,2(2,3)-sn-DAG produced from this oil, as well as a rapeseed oil enriched with 40% w/w DAG (DAGOIL). Gastric lipase was more active on 1,3-sn-DAG than on 1,2(2,3)-sn-DAG and TAG, whereas pancreatic lipase displayed a reverse selectivity with a higher activity on TAG than on DAG taken as initial substrates. However, in both cases, the highest activities were displayed on DAGOIL. These findings show that DAG mixed with TAG, such as in the course of digestion, is a better substrate for lipases than TAG. The same rapeseed oil acylglycerols were used to investigate intestinal fat absorption in rats with mesenteric lymph duct cannulation. The levels of TAG synthesized in the intestine and total fatty acid concentration in lymph were not different when the rats were fed identical amounts of rapeseed oil TAG, 1,2(2,3)-sn-DAG, 1,3-sn-DAG or DAGOIL. Since the lipolysis of 1,3-sn-DAG by digestive lipases leads to glycerol and not 2-sn-monoacylglycerol (2-sn-MAG) like TAG lipolysis, these results suggest that the re-synthesis of TAG in the enterocytes can entirely occur through the "glycerol-3-phosphate (G3P)" pathway, with the same efficiency as the 2-sn-MAG pathway predominantly involved in the intestinal fat absorption. These findings shed new light on the role played by DAG as intermediate lipolysis products. Depending on their structure, 1,2(2,3)-sn-DAG versus 1,3-sn-DAG, DAG may control the pathway (2-sn-MAG or G3P) by which TAG are re-synthesized in the enterocytes.


Asunto(s)
Diglicéridos , Enterocitos , Ratas , Animales , Diglicéridos/metabolismo , Enterocitos/metabolismo , Lipasa/metabolismo , Aceite de Brassica napus/metabolismo , Glicerol/metabolismo , Triglicéridos/metabolismo , Digestión , Redes y Vías Metabólicas
16.
Nutrients ; 14(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35406124

RESUMEN

Increases in oxidative stress have been reported to play a central role in the vulnerability to depression, and antidepressant drugs may reduce increased oxidative stress in patients. Among the plants exerting anti-inflammatory and anti-oxidant properties, saffron, a spice derived from the flower of Crocus sativus, is also known for its positive effects on depression, potentially through its SSRI-like properties. However, the molecular mechanisms underlying these effects and their health benefits for humans are currently unclear. Using an original ex vivo clinical approach, we demonstrated for the first time that the circulating human metabolites produced following saffron intake (Safr'InsideTM) protect human neurons from oxidative-stress-induced neurotoxicity by preserving cell viability and increasing BNDF production. In particular, the metabolites significantly stimulated both dopamine and serotonin release. In addition, the saffron's metabolites were also able to protect serotonergic tone by inhibiting the expression of the serotonin transporter SERT and down-regulating serotonin metabolism. Altogether, these data provide new biochemical insights into the mechanisms underlying the beneficial impact of saffron on neuronal viability and activity in humans, in the context of oxidative stress related to depression.


Asunto(s)
Crocus , Trastorno Depresivo , Crocus/química , Humanos , Neuronas , Estrés Oxidativo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Serotonina
17.
J Struct Biol ; 176(1): 32-40, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21784158

RESUMEN

The rabies virus (RABV) continues to be a worldwide health problem. RABV contains a single-stranded RNA genome that associates with the nucleoprotein N. The resulting ribonucleoprotein complex is surrounded by matrix protein M, lipid bilayer and glycoprotein G. RABV was reported to organize in bullet-like virions, but the role of each viral component in adopting this morphology is unclear. We present here a cryo-electron tomography study of RABV showing additional morphologies consisting in bullet-like virions containing a tubular, lipidic appendage having G-protein at its apex. In addition, there was evidence for an important fraction of pleomorphic particles. These pleomorphic forms differed in the amount of membrane-associated M-, M/N-protein providing interesting insight into its role in viral morphogenesis. In the absence of membrane-associated M-, M/N-protein viral morphology was almost spherical. Other images, showing straight membrane portions, correlate with the M-protein recruitment at the membrane independently of the presence of the G-protein. The viral membrane was found to contain a negative net charge indicating that M-, M/N-protein-membrane charge attraction drives this interaction.


Asunto(s)
Sustancias Macromoleculares/química , Conformación Molecular , Virus de la Rabia/ultraestructura , Virión/química , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Lípidos/química , Proteínas de la Nucleocápside/química , Propiedades de Superficie
18.
Br J Nutr ; 105(7): 1026-35, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21080982

RESUMEN

The bioavailability of α-linolenic acid (ALA) from flaxseed oil in an emulsified form v. a non-emulsified form was investigated by using two complementary approaches: the first one dealt with the characterisation of the flaxseed oil emulsion in in vitro gastrointestinal-like conditions; the second one compared the intestinal absorption of ALA in rats fed the two forms of the oil. The in vitro study on emulsified flaxseed oil showed that decreasing the pH from 7·3 to 1·5 at the physiological temperature (37°C) induced instantaneous oil globule coalescence. Some phase separation was observed under acidic conditions that vanished after further neutralisation. The lecithin used to stabilise the emulsions inhibited TAG hydrolysis by pancreatic lipase. In contrast, lipid solubilisation by bile salts (after lipase and phospholipase hydrolysis) was favoured by preliminary oil emulsification. The in vivo absorption of ALA in thoracic lymph duct-cannulated rats fed flaxseed oil, emulsified or non-emulsified, was quantified. Oil emulsification significantly favoured the rate and extent of ALA recovery as measured by the maximum ALA concentration in the lymph (Cmax = 14 mg/ml at 3 h in the emulsion group v. 9 mg/ml at 5 h in the oil group; P < 0·05). Likewise, the area under the curve of the kinetics was significantly higher in the emulsion group (48 mg × h/ml for rats fed emulsion v. 26 mg × h/ml for rats fed oil; P < 0·05). On the whole, ALA bioavailability was improved with flaxseed oil ingested in an emulsified state. Data obtained from the in vitro studies helped to partly interpret the physiological results.


Asunto(s)
Grasas de la Dieta/farmacocinética , Emulsiones/química , Aceite de Linaza/química , Sistema Linfático/metabolismo , Ácido alfa-Linolénico/farmacocinética , Animales , Área Bajo la Curva , Ácidos y Sales Biliares/metabolismo , Disponibilidad Biológica , Lino/química , Concentración de Iones de Hidrógeno , Masculino , Ratas , Ratas Wistar , Solubilidad , Temperatura , Triglicéridos/metabolismo
19.
Mol Nutr Food Res ; 65(9): e2001068, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33742729

RESUMEN

SCOPE: Synthetic emulsifiers have recently been shown to promote metabolic syndrome and considerably alter gut microbiota. Yet, data are lacking regarding the effects of natural emulsifiers, such as plant lecithins rich in essential α-linolenic acid (ALA), on gut and metabolic health. METHODS AND RESULTS: For 5 days, male Swiss mice are fed diets containing similar amounts of ALA and 0, 1, 3, or 10% rapeseed lecithin (RL) or 10% soy lecithin (SL). Following an overnight fast, they are force-fed the same oil mixture and euthanized after 90 minutes. The consumption of lecithin significantly increased fecal levels of the Clostridium leptum group (p = 0.0004), regardless of origin or dose, without altering hepatic or intestinal expression of genes of lipid metabolism. 10%-RL increased ALA abundance in plasma triacylglycerols at 90 minutes, reduced cecal bile acid hydrophobicity, and increased their sulfatation, as demonstrated by the increased hepatic RNA expression of Sult2a1 (p = 0.037) and cecal cholic acid-7 sulfate (CA-7S) concentration (p = 0.05) versus 0%-lecithin. CONCLUSION: After only 5 days, nutritional doses of RL and SL modified gut bacteria in mice, by specifically increasing C. leptum group. RL also increased postprandial ALA abundance and induced beneficial modifications of the bile acid profile. ALA-rich lecithins, especially RL, may then appear as promising natural emulsifiers.


Asunto(s)
Ácidos y Sales Biliares/análisis , Brassica napus , Microbioma Gastrointestinal/efectos de los fármacos , Glycine max , Lecitinas/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Ácidos y Sales Biliares/metabolismo , Lípidos/sangre , Masculino , Ratones , Periodo Posprandial/fisiología , Ácido alfa-Linolénico/administración & dosificación
20.
Br J Nutr ; 103(12): 1720-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20102671

RESUMEN

Numerous studies have reported an association between cognitive impairment in old age and nutritional factors, including dietary fat. Retinoic acid (RA) plays a central role in the maintenance of cognitive processes via its nuclear receptors (NR), retinoic acid receptor (RAR) and retinoid X receptor (RXR), and the control of target genes, e.g. the synaptic plasticity markers GAP-43/neuromodulin and RC3/neurogranin. Given the relationship between RA and the fatty acid signalling pathways mediated by their respective NR (RAR/RXR and PPAR), we investigated the effect of a high-fat diet (HFD) on (1) PUFA status in the plasma and brain, and (2) the expression of RA and fatty acid NR (RARbeta, RXRbetagamma and PPARdelta), and synaptic plasticity genes (GAP-43 and RC3), in young male Wistar rats. In the striatum of rats given a HFD for 8 weeks, real-time PCR (RT-PCR) revealed a decrease in mRNA levels of RARbeta ( - 14 %) and PPARdelta ( - 13 %) along with an increase in RXRbetagamma (+52 %). Concomitantly, RT-PCR and Western blot analysis revealed (1) a clear reduction in striatal mRNA and protein levels of RC3 ( - 24 and - 26 %, respectively) and GAP-43 ( - 10 and - 42 %, respectively), which was confirmed by in situ hybridisation, and (2) decreased hippocampal RC3 and GAP-43 protein levels (approximately 25 %). Additionally, HFD rats exhibited a significant decrease in plasma ( - 59 %) and brain ( - 6 %) n-3 PUFA content, mainly due to the loss of DHA. These results suggest that dietary fat induces neurobiological alterations by modulating the brain RA signalling pathway and n-3 PUFA content, which have been previously correlated with cognitive impairment.


Asunto(s)
Encéfalo/metabolismo , Grasas de la Dieta/metabolismo , Ácidos Grasos Insaturados/metabolismo , Proteína GAP-43/metabolismo , Neurogranina/metabolismo , Receptores de Ácido Retinoico/metabolismo , Tretinoina/metabolismo , Animales , Western Blotting , Grasas de la Dieta/administración & dosificación , Proteína GAP-43/genética , Masculino , Neurogranina/genética , PPAR delta/genética , PPAR delta/metabolismo , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar , Receptores de Ácido Retinoico/genética , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA