Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biol Chem ; 288(24): 17472-80, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23640888

RESUMEN

Mutations in CAV3 cause LQT syndrome 9 (LQT9). A previously reported LQT9 patient had prominent U waves on ECG, a feature that has been correlated with Kir2.1 loss of function. Our objective was to determine whether caveolin 3 (Cav3) associates with Kir2.1 and whether LQT9-associated CAV3 mutations affect the biophysical properties of Kir2.1. Kir2.1 current (IK1) density was measured using the whole-cell voltage clamp technique. WT-Cav3 did not affect IK1. However, F97C-Cav3 and T78M-Cav3 decreased IK1 density significantly by ∼60%, and P104L-Cav3 decreased IK1 density significantly by ∼30% at -60 mV. Immunostained rat heart cryosections and HEK293 cells cotransfected with Kir2.1 and WT-Cav3 both demonstrated colocalization of Kir2.1 and WT-Cav3 by confocal imaging. Cav3 coimmunoprecipitated with Kir2.1 in human ventricular myocytes and in heterologous expression systems. Additionally, FRET efficiency was highly specific, with a molecular distance of 5.6 ± 0.4 nm, indicating close protein location. Colocalization experiments found that Cav3 and Kir2.1 accumulated in the Golgi compartment. On-cell Western blot analysis showed decreased Kir2.1 cell surface expression by 60% when expressed with F97C-Cav3 and by 20% when expressed with P104L-Cav3 compared with WT-Cav3. This is the first report of an association between Cav3 and Kir2.1. The Cav3 mutations F97C-Cav3, P104L-Cav3, and T78M-Cav3 decreased IK1 density significantly. This effect was related to a reduced cell surface expression of Kir2.1. Kir2.1 loss of function is additive to the increase described previously in late INa, prolonging repolarization and leading to arrhythmia generation in Cav3-mediated LQT9.


Asunto(s)
Caveolina 3/metabolismo , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Células COS , Caveolina 3/genética , Membrana Celular/metabolismo , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/patología , Potenciales de la Membrana , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Mutación Missense , Técnicas de Placa-Clamp , Unión Proteica , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 108(48): E1227-35, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22084075

RESUMEN

A-kinase anchoring proteins (AKAPs) tether the cAMP-dependent protein kinase (PKA) to intracellular sites where they preferentially phosphorylate target substrates. Most AKAPs exhibit nanomolar affinity for the regulatory (RII) subunit of the type II PKA holoenzyme, whereas dual-specificity anchoring proteins also bind the type I (RI) regulatory subunit of PKA with 10-100-fold lower affinity. A range of cellular, biochemical, biophysical, and genetic approaches comprehensively establish that sphingosine kinase interacting protein (SKIP) is a truly type I-specific AKAP. Mapping studies located anchoring sites between residues 925-949 and 1,140-1,175 of SKIP that bind RI with dissociation constants of 73 and 774 nM, respectively. Molecular modeling and site-directed mutagenesis approaches identify Phe 929 and Tyr 1,151 as RI-selective binding determinants in each anchoring site. SKIP complexes exist in different states of RI-occupancy as single-molecule pull-down photobleaching experiments show that 41 ± 10% of SKIP sequesters two YFP-RI dimers, whereas 59 ± 10% of the anchoring protein binds a single YFP-RI dimer. Imaging, proteomic analysis, and subcellular fractionation experiments reveal that SKIP is enriched at the inner mitochondrial membrane where it associates with a prominent PKA substrate, the coiled-coil helix protein ChChd3.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas de Anclaje a la Quinasa A/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Análisis de Varianza , Animales , Western Blotting , Línea Celular , Clonación Molecular , Humanos , Inmunoprecipitación , Espectrometría de Masas , Ratones , Mutagénesis Sitio-Dirigida , Unión Proteica/genética , Resonancia por Plasmón de Superficie , Transfección
3.
J Biomed Biotechnol ; 2011: 382586, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22131804

RESUMEN

The fidelity of excitation-contraction (EC) coupling in ventricular myocytes is remarkable, with each action potential evoking a [Ca²âº](i) transient. The prevalent model is that the consistency in EC coupling in ventricular myocytes is due to the formation of fixed, tight junctions between the sarcoplasmic reticulum (SR) and the sarcolemma where Ca²âº release is activated. Here, we tested the hypothesis that the SR is a structurally inert organelle in ventricular myocytes. Our data suggest that rather than being static, the SR undergoes frequent dynamic structural changes. SR boutons expressing functional ryanodine receptors moved throughout the cell, approaching or moving away from the sarcolemma of ventricular myocytes. These changes in SR structure occurred in the absence of changes in [Ca²âº](i) during EC coupling. Microtubules and the molecular motors dynein and kinesin 1(Kif5b) were important regulators of SR motility. These findings support a model in which the SR is a motile organelle capable of molecular motor protein-driven structural changes.


Asunto(s)
Calcio/metabolismo , Acoplamiento Excitación-Contracción/fisiología , Miocitos Cardíacos/ultraestructura , Retículo Sarcoplasmático/fisiología , Potenciales de Acción , Animales , Vectores Genéticos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/ultraestructura , Humanos , Cinesinas/genética , Masculino , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestructura
4.
Circ Arrhythm Electrophysiol ; 2(5): 540-7, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19843922

RESUMEN

BACKGROUND: KCNJ2 encodes Kir2.1, a pore-forming subunit of the cardiac inward rectifier current, I(K1). KCNJ2 mutations are associated with Andersen-Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia. The aim of this study was to characterize the biophysical and cellular phenotype of a KCNJ2 missense mutation, V227F, found in a patient with catecholaminergic polymorphic ventricular tachycardia. METHODS AND RESULTS: Kir2.1-wild-type (WT) and V227F channels were expressed individually and together in Cos-1 cells to measure I(K1) by voltage clamp. Unlike typical Andersen-Tawil syndrome-associated KCNJ2 mutations, which show dominant negative loss of function, Kir2.1WT+V227F coexpression yielded I(K1) indistinguishable from Kir2.1-WT under basal conditions. To simulate catecholamine activity, a protein kinase A (PKA)-stimulating cocktail composed of forskolin and 3-isobutyl-1-methylxanthine was used to increase PKA activity. This PKA-simulated catecholaminergic stimulation caused marked reduction of outward I(K1) compared with Kir2.1-WT. PKA-induced reduction in I(K1) was eliminated by mutating the phosphorylation site at serine 425 (S425N). CONCLUSIONS: Heteromeric Kir2.1-V227F and WT channels showed an unusual latent loss of function biophysical phenotype that depended on PKA-dependent Kir2.1 phosphorylation. This biophysical phenotype, distinct from typical Andersen-Tawil syndrome mutations, suggests a specific mechanism for PKA-dependent I(K1) dysfunction for this KCNJ2 mutation, which correlates with adrenergic conditions underlying the clinical arrhythmia.


Asunto(s)
Síndrome de Andersen/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canales de Potasio de Rectificación Interna/genética , Taquicardia Ventricular/genética , Adulto , Análisis de Varianza , Síndrome de Andersen/metabolismo , Animales , Células COS/metabolismo , Células Cultivadas , Chlorocebus aethiops , Análisis Mutacional de ADN , Electrocardiografía , Femenino , Predisposición Genética a la Enfermedad , Humanos , Mutación Missense , Fenotipo , Taquicardia Ventricular/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA