RESUMEN
BACKGROUND: The treatment planning process from segmentation to producing a deliverable plan is time-consuming and labor-intensive. Existing solutions automate the segmentation and planning processes individually. The feasibility of combining auto-segmentation and auto-planning for volumetric modulated arc therapy (VMAT) for rectal cancers in an end-to-end process is not clear. PURPOSE: To create and clinically evaluate a complete end-to-end process for auto-segmentation and auto-planning of VMAT for rectal cancer requiring only the gross tumor volume contour and a CT scan as inputs. METHODS: Patient scans and data were retrospectively selected from our institutional records for patients treated for malignant neoplasm of the rectum. We trained, validated, and tested deep learning auto-segmentation models using nnU-Net architecture for clinical target volume (CTV), bowel bag, large bowel, small bowel, total bowel, femurs, bladder, bone marrow, and female and male genitalia. For the CTV, we identified 174 patients with clinically drawn CTVs. We used data for 18 patients for all structures other than the CTV. The structures were contoured under the guidance of and reviewed by a gastrointestinal (GI) radiation oncologist. The predicted results for CTV in 35 patients and organs at risk (OAR) in six patients were scored by the GI radiation oncologist using a five-point Likert scale. For auto-planning, a RapidPlan knowledge-based planning solution was modeled for VMAT delivery with a prescription of 25 Gy in five fractions. The model was trained and tested on 20 and 34 patients, respectively. The resulting plans were scored by two GI radiation oncologists using a five-point Likert scale. Finally, the end-to-end pipeline was evaluated on 16 patients, and the resulting plans were scored by two GI radiation oncologists. RESULTS: In 31 of 35 patients, CTV contours were clinically acceptable without necessary modifications. The CTV achieved a Dice similarity coefficient of 0.85 (±0.05) and 95% Hausdorff distance of 15.25 (±5.59) mm. All OAR contours were clinically acceptable without edits, except for large and small bowel which were challenging to differentiate. However, contours for total, large, and small bowel were clinically acceptable. The two physicians accepted 100% and 91% of the auto-plans. For the end-to-end pipeline, the two physicians accepted 88% and 62% of the auto-plans. CONCLUSIONS: This study demonstrated that the VMAT treatment planning technique for rectal cancer can be automated to generate clinically acceptable and safe plans with minimal human interventions.
Asunto(s)
Radioterapia de Intensidad Modulada , Neoplasias del Recto , Humanos , Masculino , Femenino , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Dosificación Radioterapéutica , Neoplasias del Recto/radioterapia , Recto , Órganos en Riesgo , Planificación de la Radioterapia Asistida por Computador/métodosRESUMEN
PURPOSE: Pediatric patients with medulloblastoma in low- and middle-income countries (LMICs) are most treated with 3D-conformal photon craniospinal irradiation (CSI), a time-consuming, complex treatment to plan, especially in resource-constrained settings. Therefore, we developed and tested a 3D-conformal CSI autoplanning tool for varying patient lengths. METHODS AND MATERIALS: Autocontours were generated with a deep learning model trained:tested (80:20 ratio) on 143 pediatric medulloblastoma CT scans (patient ages: 2-19 years, median = 7 years). Using the verified autocontours, the autoplanning tool generated two lateral brain fields matched to a single spine field, an extended single spine field, or two matched spine fields. Additional spine subfields were added to optimize the corresponding dose distribution. Feathering was implemented (yielding nine to 12 fields) to give a composite plan. Each planning approach was tested on six patients (ages 3-10 years). A pediatric radiation oncologist assessed clinical acceptability of each autoplan. RESULTS: The autocontoured structures' average Dice similarity coefficient ranged from .65 to .98. The average V95 for the brain/spinal canal for single, extended, and multi-field spine configurations was 99.9% ± 0.06%/99.9% ± 0.10%, 99.9% ± 0.07%/99.4% ± 0.30%, and 99.9% ± 0.06%/99.4% ± 0.40%, respectively. The average maximum dose across all field configurations to the brainstem, eyes (L/R), lenses (L/R), and spinal cord were 23.7 ± 0.08, 24.1 ± 0.28, 13.3 ± 5.27, and 25.5 ± 0.34 Gy, respectively (prescription = 23.4 Gy/13 fractions). Of the 18 plans tested, all were scored as clinically acceptable as-is or clinically acceptable with minor, time-efficient edits preferred or required. No plans were scored as clinically unacceptable. CONCLUSION: The autoplanning tool successfully generated pediatric CSI plans for varying patient lengths in 3.50 ± 0.4 minutes on average, indicating potential for an efficient planning aid in a resource-constrained settings.