Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Nanobiotechnology ; 20(1): 352, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907835

RESUMEN

BACKGROUND: Coronaviruses usually cause mild respiratory disease in humans but as seen recently, some human coronaviruses can cause more severe diseases, such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the global spread of which has resulted in the ongoing coronavirus pandemic. RESULTS: In this study we analyzed the potential of using iron oxide nanoparticles (IONPs) coated with biocompatible molecules like dimercaptosuccinic acid (DMSA), 3-aminopropyl triethoxysilane (APS) or carboxydextran (FeraSpin™ R), as well as iron oxyhydroxide nanoparticles (IOHNPs) coated with sucrose (Venofer®), or iron salts (ferric ammonium citrate -FAC), to treat and/or prevent SARS-CoV-2 infection. At non-cytotoxic doses, IONPs and IOHNPs impaired virus replication and transcription, and the production of infectious viruses in vitro, either when the cells were treated prior to or after infection, although with different efficiencies. Moreover, our data suggest that SARS-CoV-2 infection affects the expression of genes involved in cellular iron metabolism. Furthermore, the treatment of cells with IONPs and IOHNPs affects oxidative stress and iron metabolism to different extents, likely influencing virus replication and production. Interestingly, some of the nanoparticles used in this work have already been approved for their use in humans as anti-anemic treatments, such as the IOHNP Venofer®, and as contrast agents for magnetic resonance imaging in small animals like mice, such as the FeraSpin™ R IONP. CONCLUSIONS: Therefore, our results suggest that IONPs and IOHNPs may be repurposed to be used as prophylactic or therapeutic treatments in order to combat SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas , Animales , Células Cultivadas , Compuestos Férricos , Sacarato de Óxido Férrico , Humanos , Hierro , Ratones , SARS-CoV-2
2.
Nano Lett ; 21(17): 7213-7220, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34410726

RESUMEN

The contactless heating capacity of magnetic nanoparticles (MNPs) has been exploited in fields such as hyperthermia cancer therapy, catalysis, and enzymatic thermal regulation. Herein, we propose an advanced technology to generate multiple local temperatures in a single-pot reactor by exploiting the unique nanoheating features of iron oxide MNPs exposed to alternating magnetic fields (AMFs). The heating power of the MNPs depends on their magnetic features but also on the intensity and frequency conditions of the AMF. Using a mixture of diluted colloids of MNPs we were able to generate a multi-hot-spot reactor in which each population of MNPs can be selectively activated by adjusting the AMF conditions. The maximum temperature reached at the surface of each MNP was registered using independent fluorescent thermometers that mimic the molecular link between enzymes and MNPs. This technology paves the path for the implementation of a selective regulation of multienzymatic reactions.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Hierro , Magnetismo
3.
Adv Compos Hybrid Mater ; 7(5): 163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39371407

RESUMEN

Flexible magnetic materials have great potential for biomedical and soft robotics applications, but they need to be mechanically robust. An extraordinary material from a mechanical point of view is spider silk. Recently, methods for producing artificial spider silk fibers in a scalable and all-aqueous-based process have been developed. If endowed with magnetic properties, such biomimetic artificial spider silk fibers would be excellent candidates for making magnetic actuators. In this study, we introduce magnetic artificial spider silk fibers, comprising magnetite nanoparticles coated with meso-2,3-dimercaptosuccinic acid. The composite fibers can be produced in large quantities, employing an environmentally friendly wet-spinning process. The nanoparticles were found to be uniformly dispersed in the protein matrix even at high concentrations (up to 20% w/w magnetite), and the fibers were superparamagnetic at room temperature. This enabled external magnetic field control of fiber movement, rendering the material suitable for actuation applications. Notably, the fibers exhibited superior mechanical properties and actuation stresses compared to conventional fiber-based magnetic actuators. Moreover, the fibers developed herein could be used to create macroscopic systems with self-recovery shapes, underscoring their potential in soft robotics applications. Supplementary information: The online version contains supplementary material available at 10.1007/s42114-024-00962-y.

4.
Nanoscale Adv ; 6(16): 4207-4218, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39114136

RESUMEN

Accurate knowledge of the heating performance of magnetic nanoparticles (MNPs) under AC magnetic fields is critical for the development of hyperthermia-mediated applications. Usually reported in terms of the specific loss power (SLP) obtained from the temperature variation (ΔT) vs. time (t) curve, such an estimate is subjected to a huge uncertainty. Thus, very different SLP values are reported for the same particles when measured on different equipment/in different laboratories. This lack of control clearly hampers the further development of nanoparticle-mediated heat-triggered technologies. Here, we report a device-independent approach to calculate the SLP value of a suspension of magnetic nanoparticles: the SLP is obtained from the analysis of the peak at the AC magnetic field on/off switch of the ΔT(time) curve. The measurement procedure, which itself constitutes a change of paradigm within the field, is based on the heat diffusion equation, which is still valid when the assumptions of Newton's law of cooling are not applicable, as (i) it corresponds to the ideal scenario in which the temperature profiles of the system during heating and cooling are the same; and (ii) it diminishes the role of coexistence of various heat dissipation channels. Such an approach is supported by theoretical and computational calculations to increase the reliability and reproducibility of SLP determination. Furthermore, the new methodological approach is experimentally confirmed, by magnetic hyperthermia experiments performed using 3 different devices located in 3 different laboratories. Furthermore, the application of this peak analysis method (PAM) to a rapid succession of stimulus on/off switches which results in a zigzag-like ΔT(t), which we term the zigzag protocol, allows evaluation of possible variations of the SLP values with time or temperature.

6.
Acta Biomater ; 176: 156-172, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38281674

RESUMEN

The combination of hydrogels and magnetic nanoparticles, scarcely explored to date, offers a wide range of possibilities for innovative therapies. Herein, we have designed hybrid 3D matrices integrating natural polymers, such as collagen, chitosan (CHI) and hyaluronic acid (HA), to provide soft and flexible 3D networks mimicking the extracellular matrix of natural tissues, and iron oxide nanoparticles (IONPs) that deliver localized heat when exposed to an alternating magnetic field (AMF). First, colloidally stable nanoparticles with a hydrodynamic radius of ∼20 nm were synthesized and coated with either CHI (NPCHI) or HA (NPHA). Then, collagen hydrogels were homogeneously loaded with these coated-IONPs resulting in soft (E0 ∼ 2.6 kPa), biodegradable and magnetically responsive matrices. Polymer-coated IONPs in suspension preserved primary neural cell viability and neural differentiation even at the highest dose (0.1 mg Fe/mL), regardless of the coating, even boosting neuronal interconnectivity at lower doses. Magnetic hydrogels maintained high neural cell viability and sustained the formation of highly interconnected and differentiated neuronal networks. Interestingly, those hydrogels loaded with the highest dose of NPHA (0.25 mgFe/mg polymer) significantly impaired non-neuronal differentiation with respect to those with NPCHI. When evaluated under AMF, cell viability slightly diminished in comparison with control hydrogels magnetically stimulated, but not compared to their counterparts without stimulation. Neuronal differentiation under AMF was only affected on collagen hydrogels with the highest dose of NPHA, while non-neuronal differentiation regained control values. Taken together, NPCHI-loaded hydrogels displayed a superior performance, maybe benefited from their higher nanomechanical fluidity. STATEMENT OF SIGNIFICANCE: Hydrogels and magnetic nanoparticles are undoubtedly useful biomaterials for biomedical applications. Nonetheless, the combination of both has been scarcely explored to date. In this study, we have designed hybrid 3D matrices integrating both components as promising magnetically responsive platforms for neural therapeutics. The resulting collagen scaffolds were soft (E0 ∼ 2.6 kPa) and biodegradable hydrogels with capacity to respond to external magnetic stimuli. Primary neural cells proved to grow on these substrates, preserving high viability and neuronal differentiation percentages even under the application of a high-frequency alternating magnetic field. Importantly, those hydrogels loaded with chitosan-coated iron oxide nanoparticles displayed a superior performance, likely related to their higher nanomechanical fluidity.


Asunto(s)
Quitosano , Hidrogeles , Hidrogeles/farmacología , Quitosano/farmacología , Colágeno/farmacología , Ácido Hialurónico/farmacología , Técnicas de Cultivo de Célula , Fenómenos Magnéticos
7.
Chemphyschem ; 14(17): 3982-93, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24288286

RESUMEN

Simulations of a chemical kinetics model, based on the free-energy relationships of classical primary nucleation theory, show that the deracemization phenomenon in systems of achiral or fast racemizing compounds yielding enantiopure crystals as the more stable solid phase is a true spontaneous mirror symmetry breaking process (SMSB). That is, the achievement of a stationary chiral state is more stable than the racemic one. The model translates the free-energy relationships determined by the existence of a critical size cluster to a chemical kinetics model, in which the consideration of forward and backward reaction rate constants avoids the misuse of network parameters that violate thermodynamic constraints (microreversibility principle), which would lead to apparent in silico SMSB. The model provides qualitative agreement for deracemizations by mechanical attrition of visible crystals, as well as for those obtained under temperature gradients. The analysis of the effect of the system parameters to obtain a SMSB scenario shows that the network possesses the principal characteristics of SMSB networks: 1) an enantioselective autocatalytic stage, corresponding to the non-linear kinetics of enantioselective (homochiral) cluster-to-cluster growth, and 2) the mutual inhibition step originating in the backward flow of chiral clusters towards smaller achiral clusters, or even to a racemizing monomer. The application of such a SMSB kinetic model to enantioselective polymerizations and to chiral biopolymers is discussed.


Asunto(s)
Polimerizacion , Catálisis , Simulación por Computador , Modelos Químicos , Estereoisomerismo , Termodinámica
8.
Int J Hyperthermia ; 29(8): 768-76, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24001026

RESUMEN

The final goal in magnetic hyperthermia research is to use nanoparticles in the form of a colloidal suspension injected into human beings for a therapeutic application. Therefore the challenge is not only to develop magnetic nanoparticles with good heating capacities, but also with good colloidal properties, long blood circulation time and with grafted ligands able to facilitate their specific internalisation in tumour cells. Significant advances have been achieved optimising the properties of the magnetic nanoparticles, showing extremely large specific absorption rate values that will contribute to a reduction in the concentration of the magnetic fluid that needs to be administered. In this review we show the effect of different characteristics of the magnetic particles, such as size, size distribution and shape, and the colloidal properties of their aqueous suspensions, such as hydrodynamic size and surface modification, on the heating capacity of the magnetic colloids.


Asunto(s)
Hipertermia Inducida , Campos Magnéticos , Nanopartículas , Animales , Calor , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias/terapia
9.
Chirality ; 25(7): 393-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23733532

RESUMEN

Experimental results show that benzil (1,2-diphenyl-1,2-ethanedione), an achiral compound that crystallizes as a racemic conglomerate, yields by solidification polycrystalline scalemic mixtures of high enantiomeric excesses. These results are related to those previously reported in this type of compounds on deracemizations of racemic mixtures of crystal enantiomorphs obtained by wet grinding. However, the present results strongly suggest that these experiments cannot be explained without taking into account chiral recognition interactions at the level of precritical clusters. The conditions that would define a general thermodynamic scenario for such deracemizations are discussed.

10.
Cryst Growth Des ; 23(1): 59-67, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36624778

RESUMEN

The search for competitive processes and products using environmentally friendly chemistry is, nowadays, one of the greatest challenges in materials science. In this work, we explore the influence of magnetic inductive heating on the synthesis of magnetic iron oxide nanoparticles in water, either by the coprecipitation of iron(II) and iron(III) salts or by the oxidative precipitation of an iron(II) salt. In the first case, the way the heat is transmitted to the system influences mainly the nanoparticle growth that is thermally activated reaching nanoparticles up to 16 nm. In the second case, it influences magnetic nanoparticle nucleation through the dissolution of the initial iron oxyhydroxide formed (the Green Rust) and the crystallization of magnetic iron oxide leading to nanoparticles up to 55-64 nm. This nonconventional heating method can produce monodisperse populations (size distribution <25%) of bigger magnetic iron oxide nanoparticles if the appropriate magnetic field conditions are used. The results were interpreted as an enhancement of the oriented attachment growth mechanism by the use of inductive heating, and suggest the possibility of increasing the size range of nanomaterials that can be obtained by sustainable aqueous routes using nonconventional heating, while maintaining low size dispersity.

11.
Langmuir ; 28(1): 178-85, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22103685

RESUMEN

A considerable increase in the saturation magnetization, M(s) (40%), and initial susceptibility of ultrasmall (<5 nm) iron oxide nanoparticles prepared by laser pyrolysis was obtained through an optimized acid treatment. Moreover, a significant enhancement in the colloidal properties, such as smaller aggregate sizes in aqueous media and increased surface charge densities, was found after this chemical protocol. The results are consistent with a reduction in nanoparticle surface disorder induced by a dissolution-recrystallization mechanism.


Asunto(s)
Coloides , Compuestos Férricos/química , Magnetismo , Nanopartículas del Metal , Microscopía Electrónica de Transmisión , Difracción de Polvo , Agua
12.
J Colloid Interface Sci ; 608(Pt 2): 1585-1597, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742075

RESUMEN

Elucidation of reaction mechanisms in forming nanostructures is relevant to obtain robust and affordable protocols that can lead to materials with enhanced properties and good reproducibility. Here, the formation of magnetic iron oxide monocrystalline nanoflowers in polyol solvents using N-methyldiethanolamine (NMDEA) as co-solvent has been shown to occur through a non-classical crystallization pathway. This pathway involves intermediate mesocrystals that, in addition, can be transformed into large single colloidal nanocrystals. Interestingly, the crossover of a non-classical crystallization pathway to a classical crystallization pathway can be induced by merely changing the NMDEA concentration. The key is the stability of a green rust-like intermediate complex that modulates the nucleation rate and growth of magnetite nanocrystals. The crossover separates two crystallization domains (classical and non-classical) and three basic configurations (mesocrystals, large and small colloidal nanocrystals). The above finding facilitated the synthesis of magnetic materials with different configurations to suit various engineering applications. Consequently, the effect of the single and multicore configurations of magnetic iron oxide on the biomedical (magnetic hyperthermia and enzyme immobilization) and catalytic activity (Fenton-like reactions and photo-Fenton-like processes driven by visible light irradiation) has been experimentally demonstrated.


Asunto(s)
Aminas , Coloides , Cristalización , Compuestos Férricos , Fenómenos Magnéticos , Reproducibilidad de los Resultados
13.
Nanomaterials (Basel) ; 11(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34443890

RESUMEN

The application of magnetic nanoparticles requires large amounts of materials of reproducible quality. This work explores the scaled-up synthesis of multi-core iron oxide nanoparticles through the use of thermal decomposition in organic media and kilograms of reagents. To this end, we check the effect of extending the high temperature step from minutes to hours. To address the intrinsic variability of the colloidal crystallization nucleation process, the experiments were repeated and analyzed statistically. Due to the simultaneity of the nuclei growth and agglomeration steps, the nanostructure of the samples produced was a combination of single- and multi-core nanoparticles. The main characteristics of the materials obtained, as well as the reaction yields, were analyzed and compared. As a general rule, yield, particle size, and reproducibility increase when the time at high temperature is prolonged. The samples obtained were ranked in terms of the reproducibility of different structural, colloidal, and magnetic features. The capability of the obtained materials to act as nanoheaters in magnetic hyperthermia was assessed, showing a strong dependence on the crystallite size (calculated by X-ray diffraction), reflecting the nanoparticle volume with a coherent magnetization reversal.

14.
Nanomaterials (Basel) ; 11(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924017

RESUMEN

Advanced oxidation processes constitute a promising alternative for the treatment of wastewater containing organic pollutants. Still, the lack of cost-effective processes has hampered the widespread use of these methodologies. Iron oxide magnetic nanoparticles stand as a great alternative since they can be engineered by different reproducible and scalable methods. The present study consists of the synthesis of single-core and multicore magnetic iron oxide nanoparticles by the microwave-assisted polyol method and their use as self-heating catalysts for the degradation of an anionic (acid orange 8) and a cationic dye (methylene blue). Decolorization of these dyes was successfully improved by subjecting the catalyst to an alternating magnetic field (AMF, 16 kA/m, 200 kHz). The sudden temperature increase at the surface of the catalyst led to an intensification of 10% in the decolorization yields using 1 g/L of catalyst, 0.3 M H2O2 and 500 ppm of dye. Full decolorization was achieved at 90 °C, but iron leaching (40 ppm) was detected at this temperature leading to a homogeneous Fenton process. Multicore nanoparticles showed higher degradation rates and 100% efficiencies in four reusability cycles under the AMF. The improvement of this process with AMF is a step forward into more sustainable remediation techniques.

15.
Materials (Basel) ; 14(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546176

RESUMEN

The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia.

16.
Chemistry ; 15(17): 4411-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19288488

RESUMEN

Herein, we report the efficient synthesis of RNA bases and functionalized s-triazines from 0.1 M urea solutions in water after subjection to freeze-thaw cycles for three weeks. The icy solution was under a reductive, methane-based atmosphere, which was subjected to spark discharges as an energy source for the first 72 h of the experiment. Analysis of the products indicates the synthesis of the s-triazines cyanuric acid, ammeline, ammelide, and melamine, the pyrimidines cytosine, uracil, and 2,4-diaminopyrimidine, and the purine adenine. An experiment performed as a control at room temperature, with the urea solution in the liquid phase and with the same atmosphere and energy source, led to the synthesis of hydantoins and insoluble tholin, but there was no evidence of the synthesis of pyrimidines or triazines. The synthesis of pyrimidines from urea is possible under a methane/nitrogen atmosphere only at low temperature, in the solid phase. The generation of both pyrimidines and triazines in comparable yields from urea, together with a possible role for triazines as alternative nucleobases, opens new perspectives on the prebiotic chemistry of informational polymers.


Asunto(s)
Hielo , Pirimidinas/síntesis química , Triazinas/síntesis química , Citosina/síntesis química , Citosina/química , Evolución Química , Cromatografía de Gases y Espectrometría de Masas/métodos , Estructura Molecular , Pirimidinas/química , Triazinas/química , Uracilo/síntesis química , Uracilo/química
17.
J Phys Chem B ; 113(19): 7033-9, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19378984

RESUMEN

Colloidal dispersions of monodispersed and high-crystalline magnetite nanoparticles have been used to establish a relationship between magnetic properties and magnetic resonance (MR) relaxometric parameters in vitro. Magnetite nanoparticles with diameters between 4 and 14 nm were synthesized by thermal decomposition of Fe(acac)3 in different organic solvents and transformed to hydrophilic by changing oleic acid for dimercaptosuccinic acid (DMSA). A final treatment in alkaline water was critical to make the suspension stable at pH 7 with xi-potential values of -45 mV and hydrodynamic sizes as low as 50 nm. Samples showed superparamagnetic behavior at room temperature, which is an important parameter for biomedical applications. Susceptibility increased with both particle and aggregate size, and for particles larger than 9 nm, the aggregate size was the key factor controlling the susceptibility. Relaxivity values followed the same trend as the suspension susceptibilities, indicating that the aggregate size is an important factor above a certain particle size governing the proton relaxation times. The highest relaxivity value, r2=317 s(-1) mM(-1), much higher than those for commercial contrast agents with similar hydrodynamic size, was obtained for a suspension consisting of 9 nm particles and 70 nm of hydrodynamic size, and it was assigned to the higher particle crystallinity in comparison to particles prepared by coprecipitation. Therefore, it can be concluded that in addition to the sample crystallinity, both particle size and aggregate size should be considered in order to explain the magnetic and relaxivity values of a suspension.

18.
Nanotechnology ; 20(11): 115103, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19420433

RESUMEN

The internalization and biocompatibility of iron oxide nanoparticles surface functionalized with four differently charged carbohydrates have been tested in the human cervical carcinoma cell line (HeLa). Neutral, positive, and negative iron oxide nanoparticles were obtained by coating with dextran, aminodextran, heparin, and dimercaptosuccinic acid, resulting in colloidal suspensions stable at pH 7 with similar aggregate size. No intracellular uptake was detected in cells incubated with neutral charged nanoparticles, while negative particles showed different behaviour depending on the nature of the coating. Thus, dimercaptosuccinic-coated nanoparticles showed low cellular uptake with non-toxic effects, while heparin-coated particles showed cellular uptake only at high nanoparticle concentrations and induced abnormal mitotic spindle configurations. Finally, cationic magnetic nanoparticles show excellent properties for possible in vivo biomedical applications such as cell tracking by magnetic resonance imaging (MRI) and cancer treatment by hyperthermia: (i) they enter into cells with high effectiveness, and are localized in endosomes; (ii) they can be easily detected inside cells by optical microscopy, (iii) they are retained for relatively long periods of time, and (iv) they do not induce any cytotoxicity.


Asunto(s)
Endocitosis , Compuestos Férricos/metabolismo , Magnetismo , Nanopartículas/química , Neoplasias/patología , Muerte Celular , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Microtúbulos/metabolismo , Nanopartículas/ultraestructura , Neoplasias/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Temperatura
19.
Chem Biodivers ; 6(9): 1309-22, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19774593

RESUMEN

The complex salt named Prussian Blue, Fe4[Fe(CN)6]3 x 15 H2O, can release cyanide at pH > 10. From the point of view of the origin of life, this fact is of interest, since the oligomers of HCN, formed in the presence of ammonium or amines, leads to a variety of biomolecules. In this work, for the first time, the thermal wet decomposition of Prussian Blue was studied. To establish the influence of temperature and reaction time on the ability of Prussian Blue to release cyanide and to subsequently generate other compounds, suspensions of Prussian Blue were heated at temperatures from room temperature to 150 degrees at pH 12 in NH3 environment for several days. The NH3 wet decomposition of Prussian Blue generated hematite, alpha-Fe2O3, the soluble complex salt (NH4)4[Fe(CN6)] x 1.5 H2O, and several organic compounds, the nature and yield of which depend on the experimental conditions. Urea, lactic acid, 5,5-dimethylhydantoin, and several amino acids and carboxylic acids were identified by their trimethylsilyl (TMS) derivatives. HCN, cyanogen (C2N2), and formamide (HCONH2) were detected in the gas phase by GC/MS analysis.


Asunto(s)
Ferrocianuros/química , Amoníaco/química , Cianuros/química , Cromatografía de Gases y Espectrometría de Masas , Calor , Concentración de Iones de Hidrógeno
20.
Adv Drug Deliv Rev ; 138: 68-104, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30553951

RESUMEN

Ferrimagnetic iron oxide nanoparticles (magnetite or maghemite) have been the subject of an intense research, not only for fundamental research but also for their potentiality in a widespread number of practical applications. Most of these studies were focused on nanoparticles with spherical morphology but recently there is an emerging interest on anisometric nanoparticles. This review is focused on the synthesis routes for the production of uniform anisometric magnetite/maghemite nanoparticles with different morphologies like cubes, rods, disks, flowers and many others, such as hollow spheres, worms, stars or tetrapods. We critically analyzed those procedures, detected the key parameters governing the production of these nanoparticles with particular emphasis in the role of the ligands in the final nanoparticle morphology. The main structural and magnetic features as well as the nanotoxicity as a function of the nanoparticle morphology are also described. Finally, the impact of each morphology on the different biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) are analysed in detail. We would like to dedicate this work to Professor Carlos J. Serna, Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, for his outstanding contribution in the field of monodispersed colloids and iron oxide nanoparticles. We would like to express our gratitude for all these years of support and inspiration on the occasion of his retirement.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas de Magnetita/química , Animales , Diseño de Fármacos , Humanos , Ligandos , Nanopartículas de Magnetita/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA