Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Langmuir ; 40(11): 5923-5933, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38428025

RESUMEN

The introduction of colloidal principles that enable efficient microplastic collection from aquatic environments is a goal of great environmental importance. Here, we present a novel method of microplastic (MP) collection using biodegradable hydrogel soft dendritic colloids (hSDCs). These dendritic colloids have abundant nanofibrils and a large surface area, which provide an abundance of interfacial interactions and excellent networking capabilities, allowing for the capture of plastic particles and other contaminants. Here, we show how the polymer composition and morphology of the hSDCs can impact the capture of microplastics modeled by latex microbeads. Additionally, we use colloidal DLVO theory to interpret the capture efficiencies of microbeads of different sizes and surface functional groups. The results demonstrate the microplastic remediation efficiency of hydrogel dendricolloids and highlight the primary factors involved in the microbead interactions and adsorption. On a practical level, the results show that the development of environmentally benign microcleaners based on naturally sourced materials could present a sustainable solution for microplastic cleanup.

2.
Soft Matter ; 19(22): 4123-4136, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249009

RESUMEN

Colloidal particles with anisotropic shapes and interactions display rich phase behavior and have potential as structural bases for materials with controllable properties. In this paper, we explore the self-assembling characteristics of a new class of particles that have been shown experimentally to form reconfigurable structures: microscopic cube-shaped colloids with a magnetic dipole that is transversely offset from the particle's center of mass. We have performed in silico simulations of the dynamics of large numbers of dipolar squares in two-dimensions using discontinuous molecular dynamics (DMD). We use a coarse-grain method where the dipolar microcubes are represented by a group of four hard circles bonded together to create a rigid square in two-dimensions and two opposite charges are embedded within the square to represent a magnetic dipole. Annealing, or "slow-cooling", simulations are conducted to determine the equilibrium structures. Systems of dipolar squares tend to assemble into one of two different types of conformations: either single- or double-stranded assemblies, each with unique structures and phase diagrams in the temperature-density plane. Single-stranded assemblies form highly interconnected percolated, or gel-like, networks. In contrast, double stranded assemblies tend to form globally-aligned nematic states at high densities, although this is not seen consistently in all runs. The phase behavior of systems of dipolar squares depends not only on the system's temperature and density, but also on the type of dipole embedded within the square and on the relative number of squares with an opposite "handedness" that are present within the system.

3.
Soft Matter ; 19(14): 2466-2485, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946137

RESUMEN

The long-ranged interactions induced by magnetic fields and capillary forces in multiphasic fluid-particle systems facilitate the assembly of a rich variety of colloidal structures and materials. We review here the diverse structures assembled from isotropic and anisotropic particles by independently or jointly using magnetic and capillary interactions. The use of magnetic fields is one of the most efficient means of assembling and manipulating paramagnetic particles. By tuning the field strength and configuration or by changing the particle characteristics, the magnetic interactions, dynamics, and responsiveness of the assemblies can be precisely controlled. Concurrently, the capillary forces originating at the fluid-fluid interfaces can serve as means of reconfigurable binding in soft matter systems, such as Pickering emulsions, novel responsive capillary gels, and composites for 3D printing. We further discuss how magnetic forces can be used as an auxiliary parameter along with the capillary forces to assemble particles at fluid interfaces or in the bulk. Finally, we present examples how these interactions can be used jointly in magnetically responsive foams, gels, and pastes for 3D printing. The multiphasic particle gels for 3D printing open new opportunities for making of magnetically reconfigurable and "active" structures.

4.
Environ Sci Technol ; 56(4): 2071-2095, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35077140

RESUMEN

This review explores biobased polymers for industrial applications, their end fate, and most importantly, origin and key aspects enabling soil biodegradation. The physicochemical properties of biobased synthetic and natural polymers and the primary factors governing degradation are explored. Current and future biobased systems and factors allowing for equivalent comparisons of degradation and possible sources for engineering improved biodegradation are reviewed. Factors impacting ultraviolet (UV) stability of biopolymers have been described including methods to enhance photoresistance and impact on biodegradation. It discusses end-fate of biopolymers in soil and impact of residues on soil health. A limited number of studies examine side effects (e.g., microbial toxicity) from soil biodegradation of composites and biopolymers. Currently available standards for biodegradation and composting have been described with limitations and scope for improvements. Finally, design considerations and implications for sustainable polymers used, under consideration, and to be considered within the context of a rational biodegradable strategy are elaborated.


Asunto(s)
Plásticos , Polímeros , Biodegradación Ambiental , Biopolímeros/química , Biopolímeros/metabolismo , Suelo
5.
Macromol Rapid Commun ; 43(23): e2200513, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35988012

RESUMEN

The deposition of coatings with hierarchical morphology from hydrophobic and hydrophilic polymers is a common approach for making superhydrophobic and superhydrophilic coatings. The water-repellent, water-wicking, and anti-icing coatings reported here are made from a class of materials called soft dendritic colloids (SDCs). The branched, nanofibrous SDCs are produced in suspension through nonsolvent-induced phase separation in a turbulent medium. The properties of coatings formed by drying ethanol suspensions of SDCs made of polystyrene, polyvinyl alcohol, and polyester are compared. The highly branched SDC morphology creates entangled, porous coating layers with strong physical adhesion to the substrate due to the multitude of nanofiber sub-contacts analogous to the "gecko leg effect". Polystyrene SDC coatings show excellent superhydrophobicity but weaker adhesion due to low surface energy. Alternatively, polyvinyl alcohol SDC coatings show superhydrophilicity and strong adhesion from their high surface energy. Two strategies to improve the adhesivity and cohesivity of the SDCs layers are shown effective - use of intertwined networks and of silicone droplet microbinders. The water repulsion, together with the air trapped in the blended superhydrophobic coatings also makes them effective against ice nucleation and adhesion. Finally, these SDCs make thin, flexible, and durable nonwovens with similar properties.

6.
Nat Mater ; 18(12): 1315-1320, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31611673

RESUMEN

The interplay between morphology, excluded volume and adhesivity of particles critically determines the physical properties of numerous soft materials and coatings1-6. Branched particles2 or nanofibres3, nanofibrillated cellulose4 or fumed silica5 can enhance the structure-building abilities of colloids, whose adhesion may also be increased by capillarity or binding agents6. Nonetheless, alternative mechanisms of strong adhesion found in nature involve fibrillar mats with numerous subcontacts (contact splitting)7-11 as seen in the feet of gecko lizards and spider webs12-17. Here, we describe the fabrication of hierarchically structured polymeric microparticles having branched nanofibre coronas with a dendritic morphology. Polymer precipitation in highly turbulent flow results in microparticles with fractal branching and nanofibrillar contact splitting that exhibit gelation at very low volume fractions, strong interparticle adhesion and binding into coatings and non-woven sheets. These soft dendritic particles also have potential advantages for food, personal care or pharmaceutical product formulations.


Asunto(s)
Dendrímeros/química , Fenómenos Mecánicos , Microesferas , Adhesividad , Peso Molecular , Poliestirenos/química , Propiedades de Superficie
7.
Langmuir ; 36(25): 7148-7154, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32011137

RESUMEN

Miniaturized devices capable of active swimming at low Reynolds numbers are of fundamental importance and possess potential biomedical utility. The design of colloidal microswimmers requires not only miniaturizing reconfigurable structures but also understanding their interactions with media at low Reynolds numbers. We investigate the dynamics of "microscallops" made of asymmetric magnetic cubes, which are assembled and actuated using magnetic fields. One approach to achieving directional propulsion is to break the symmetry of the viscous forces by coupling the reciprocal motions of such microswimmers with the nonlinear rheology inherent in non-Newtonian fluids. When placed in shear-thinning fluids, the local viscosity gradient resulting from nonuniform shear stresses exerted by time-asymmetric strokes of the microscallops generates propulsive thrust through an effect we term "self-viscophoresis". Surprisingly, we found that the direction of propulsion changes with the size and structure of these assemblies. We analyze the origins of their directional propulsion and explain the variable propulsion direction in terms of multiple counterbalancing domains of shear dissipation around the microscale structures. The principles governing the locomotion of these microswimmers may be extended to other reconfigurable microbots assembled from colloidal-scale units.

8.
Soft Matter ; 16(11): 2683-2694, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32026917

RESUMEN

Ionomer polyesters have polymer backbones functionalized with charged groups that make them water-dispersible. Despite the widespread use of ionomer polymers in environmentally friendly coatings without volatile organic solvents, the fundamental understanding of their film formation properties is still limited. In the study, we deposited polyester nanofilms of brilliant structural colors and correlated the macroscale optical properties to the microscale thickness of the thin films. We found that sessile water droplets deposited on these films drive the formation of a rich variety of structures by an evaporation-induced effect of "coffee-ring erosion". The ionomers spontaneously get partially re-dispersed in the form of nanoparticles in the sessile droplets and driven by convective evaporation flows, become redistributed in multiple colorful ring patterns. By using the structural colors as means to follow the polymer redistribution, we characterized further the coffee-ring patterns and found that the generated patterns are dictated by polymer composition but are mostly independent on molecular weight. As expected by colloidal theory, this phenomenon was suppressed in presence of electrolytes. Furthermore, we show that the integrity of these thin polyester films can be significantly improved by thermal densification without any further chemical curing.

9.
Soft Matter ; 14(11): 2118-2130, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29488992

RESUMEN

Water-dispersible sulfopolyesters are a major class of film-forming and solution-modifying polymers, which are routinely used in applications such as inks, adhesives, coatings, and personal care products. Since these polyesters are designed to be used as waterborne dispersions, understanding their colloidal interactions in dispersions is critical for their application. By using a range of commercially available water-dispersible sulfopolyesters as a model system, we investigated the relationship between their molecular composition, colloidal interactions, and phase equilibria. We established how these polyesters undergo different molecular configurations and nanoaggregated states, depending on the nature of the liquid medium. For example, the polyesters are in a solvated molecular form in certain organic solvents, whereas they self-assemble into compact nanoaggregates in water. We found that the interactions of these nanoaggregates follow the classical DLVO theory of critical colloidal coagulation where the stability of these nanoparticles is extremely sensitive to multivalent electrolytes (i.e., Ccrit ∝ z-6). By using static, dynamic, and electrophoretic light scattering, we correlate their nanoscale intermolecular and interparticle interactions with corresponding macroscale phase behavior in both organic medium and water, based on the theoretical framework of second virial coefficients. We present a model for nanoaggregate formation in water based on the critical surface charge density of these nanoparticles. Such fundamental understanding of colloidal interactions could be used to efficiently control and improve the colloidal stability and film-formation ability of these polyesters and may enable the design of novel high-performance surfactant-free waterborne dispersion systems.

10.
Soft Matter ; 14(17): 3296-3303, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29670971

RESUMEN

Soft and stretchable materials play an important role in the emerging fields of soft robotics, human-machine interfaces, and stretchable electronics. Hydrogels are compelling materials because they are soft, chemically tunable, biocompatible, and ionically conductive. Hydrogels have been used as components of skin mountable sensors, such as electrocardiogram (ECG) electrodes, and show promise in emerging devices as stretchable, transparent electrodes. Ultimately, these types of devices interface the hydrogel with rigid metallic electrodes to connect with electronic circuitry. Here, we show it is possible to interface hydrogel with liquid metal (eutectic gallium indium, EGaIn) electrodes to create completely soft and deformable electrodes that provide low resistance traces through the gel without altering its mechanical properties. As a case study, we created and tested electrodes for ECG monitoring. ECG electrodes require low impedance at biomedically relevant frequencies (1-50 Hz). Potentiostatic electrochemical impedance spectroscopy measurements show that capacitive effects at the hydrogel-EGaIn interface dominate the impedance at these low frequencies, yet can be reduced by interfacing the metal with acidic or basic hydrogels that remove the native oxide skin from the metal. Increasing the ionic strength of the hydrogel also helps in lowering the impedance of the metal-hydrogel electrodes. The resulting devices have signal-to-noise ratios that exceed commercial ECG electrodes. The softness of these hydrogels can be modified without compromising the electrical properties to create truly soft electrodes. Interfacing liquid metal conductors with hydrogels represents a potential strategy of creating soft electrodes for various bioelectronic applications, e-skins, and next-generation soft robotics.

11.
Langmuir ; 33(21): 5304-5313, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28481540

RESUMEN

We report how dielectrophoresis (DEP) can be used as a tool for the fabrication of biocomposite coatings of photoreactive cyanobacteria (Synechococcus PCC7002) on flexible polyester sheets (PEs). The PE substrates were precoated by a layer-by-layer assembled film of charged polyelectrolytes. In excellent agreement between experimental data and numerical simulations, the directed assembly process driven by external electric field results in the formation of 1D chains and 2D sheets by the cells. The preassembled cyanobacteria chains and arrays became deposited on the substrate and remained in place after the electric field was turned off due to the electrostatic attraction between the negatively charged cell surfaces and the positively charged polyelectrolyte-coated PE. The DEP-assisted packing of cyanobacteria is close to the maximal surface coverage of ∼70% estimated from convectively assembled monolayers. Confocal laser scanning microscopy and spectrophotometry confirm that the photosynthetic pigment integrity of the Synechococcus cells is preserved after DEP immobilization. The significant decrease of the light scattering and the enhanced transmittance of these field-assembled cyanobacteria coatings demonstrate reduced self-shading compared to suspension cultures. Thus, we achieved the assembly of structured cyanobacteria coatings that optimize cell surface coverage and preserve cell viability after immobilization. This is a step toward the development of flexible multilayered cell-based photoabsorbing biomaterials that can serve as components of "biomimetic leaves" for utilizing solar energy to recycle CO2 into fuels or chemicals.


Asunto(s)
Cianobacterias , Materiales Biocompatibles , Biomimética , Supervivencia Celular , Poliésteres
12.
Soft Matter ; 13(17): 3134-3146, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28397900

RESUMEN

A major research theme in materials science is determining how the self-assembly of new generations of colloidal particles of complex shape and surface charge is guided by their interparticle interactions. In this paper, we describe results from quasi-2D Monte Carlo simulations of systems of colloidal particles with offset transversely-oriented extended dipole-like charge distributions interacting via an intermediate-ranged Yukawa potential. The systems are cooled slowly through an annealing procedure during which the temperature is lowered in discrete steps, allowing the system to equilibrate. We perform ground state calculations for two, three and four particles at several shifts of the dipole vector from the particle center. We create state diagrams in the plane spanned by the temperature and the area fraction outlining the boundaries between fluid, string-fluid and percolated states at various values of the shift. Remarkably we find that the effective cooling rate in our simulations has an impact on the structures formed, with chains being more prevalent if the system is cooled quickly and cyclic structures more prevalent if the system is cooled slowly. As the dipole is further shifted from the center, there is an increased tendency to assemble into small cyclic structures at intermediate temperatures. These systems further self-assemble into open lattice-like arrangements at very low temperatures. The novel structures identified might be useful for photonic applications, new types of porous media for filtration and catalysis, and gel matrices with unusual properties.

13.
J Am Chem Soc ; 138(45): 14948-14953, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27775335

RESUMEN

Janus and patchy particles are emerging as models for studying complex directed assembly patterns and as precursors of new structured materials and composites. Here we show how lipid-induced capillary bridging could serve as a new and nonconventional method of assembling patchy particles into ordered structures. Iron oxide surface patches on latex microspheres were selectively wetted with liquid lipid, driving the particle assembly into two- and three-dimensional clusters via interparticle capillary bridge formation. The liquid phase of the bridges allows local reorganization of the particles within the clusters and assists in forming true equilibrium configurations. The temperature-driven fluid-to-gel and gel-to-fluid phase transitions of the fatty acids within the bridge act as a thermal switch for cluster assembly and disassembly. By complementing the experiments with Monte Carlo simulations, we show that the equilibrium cluster morphology is determined by the patch characteristics, namely, their size, number, and shape. This study demonstrates the ability of capillary bridging as a versatile tool to assemble thermoresponsive clusters and aggregates. This method of binding particles is simple, robust, and generic and can be extended further to assemble particles with nonspherical shapes and complex surface chemistries enabling the formation of sophisticated colloidal molecules.

14.
Small ; 12(17): 2283-90, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26969914

RESUMEN

Hydrogel composites that respond to stimuli can form the basis of new classes of biomimetic actuators and soft robotic components. Common latex microspheres can be assembled and patterned by AC electric fields within a soft thermoresponsive hydrogel. The field-oriented particle chains act as endoskeletal structures, which guide the macroscopic bending pattern of the actuators.


Asunto(s)
Biomimética , Hidrogeles , Robótica , Tamaño de la Partícula
15.
Nat Mater ; 14(11): 1104-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26237128

RESUMEN

The fabrication of multifunctional materials with tunable structure and properties requires programmed binding of their building blocks. For example, particles organized in long-ranged structures by external fields can be bound permanently into stiff chains through electrostatic or van der Waals attraction, or into flexible chains through soft molecular linkers such as surface-grafted DNA or polymers. Here, we show that capillarity-mediated binding between magnetic nanoparticles coated with a liquid lipid shell can be used for the assembly of ultraflexible microfilaments and network structures. These filaments can be magnetically regenerated on mechanical damage, owing to the fluidity of the capillary bridges between nanoparticles and their reversible binding on contact. Nanocapillary forces offer opportunities for assembling dynamically reconfigurable multifunctional materials that could find applications as micromanipulators, microbots with ultrasoft joints, or magnetically self-repairing gels.


Asunto(s)
ADN/química , Nanopartículas de Magnetita/química , Modelos Químicos , Nanopartículas de Magnetita/ultraestructura
16.
Langmuir ; 32(25): 6468-77, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27268077

RESUMEN

Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and Organosolv (high-purity lignin). The green synthesis process is based on flash precipitation of dissolved lignin polymer, which enabled the formation of nanoparticles in the size range of 45-250 nm. The size evolution of the two types of lignin particles is fitted on the basis of modified diffusive growth kinetics and mass balance dependencies. The surface properties of the nanoparticles are fine-tuned by coating them with a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). We analyze how the colloidal stability and dispersion properties of these two types of nanoparticles vary as a function of pH and salinities. The data show that the properties of the nanoparticles are governed by the type of lignin used and the presence of polyelectrolyte surface coating. The coating allows the control of the nanoparticles' surface charge and the extension of their stability into strongly basic regimes, facilitating their potential application at extreme pH conditions.

17.
Soft Matter ; 12(22): 4932-43, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27151445

RESUMEN

Colloids with anisotropic shape and charge distribution can assemble into a variety of structures that could find use as novel materials for optical, photonic, electronic and structural applications. Because experimental characterization of the many possible types of multi-shape and multipolar colloidal particles that could form useful structures is difficult, the search for novel colloidal materials can be enhanced by simulations of colloidal particle assembly. We have simulated a system of dipolar colloidal rods at fixed aspect ratio using discontinuous molecular dynamics (DMD) to investigate how the charge separation of an embedded dipole affects the types of assemblies that occur. Each dipolar rod is modeled as several overlapping spheres fixed in an elongated shape to represent excluded volume and two smaller, embedded spheres to represent the charges that make up the extended dipole. Large charge separations predominately form structures where the rods link head-to-tail while small charge separations predominately form structures where the rods stack side-by-side. Rods with small charge separations tend to form dense aggregates while rods with large charge separations tend to form coarse gel-like structures. Structural phase boundaries between fluid, string-fluid, and "gel" (networked) phases are mapped out and characterized as to whether they have global head-to-tail or global side-by-side order. A structural coarsening transition is observed for particles with large charge separations in which the head-tail networks thicken as temperature is lowered due to an increased tendency to form side-by-side structures. Triangularly connected networks form at small charge separations; these may be useful for encapsulating smaller particles.

18.
Soft Matter ; 12(37): 7747-58, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27537850

RESUMEN

Dipolar interactions between nano- and micron sized colloids lead to their assembly into domains with well-defined local order. The particles with a single dipole induced by an external field assemble into linear chains and clusters. However, to achieve the formation of multidirectionally organized nano- or microassemblies with tunable physical characteristics, more sophisticated interaction tools are needed. Here we demonstrate that such complex interactions can be introduced in the form of two independent, non-interacting dipoles (double-dipoles) within a microparticle. We show how this can be achieved by the simultaneous application of alternating current (AC)-electric field and uniform magnetic field to dispersions of superparamagnetic microspheres. Depending on their timing and intensity, concurrent electric and magnetic fields lead to the formation of bidirectional particle chains, colloidal networks, and discrete crystals. We investigate the mechanistic details of the assembly process, and identify and classify the non-equilibrium states formed. The morphologies of different experimental states are in excellent correlation with our theoretical predictions based on Brownian dynamics simulations combined with a structural analysis based on local energy parameters. This novel methodology of introducing and interpreting double-dipolar particle interactions may assist in the assembly of colloidal coatings, dynamically reconfigurable particle networks, and bidirectional active structures.

19.
Langmuir ; 31(29): 7897-908, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25683680

RESUMEN

Field-directed colloidal assembly has shown remarkable recent progress in increasing the complexity, degree of control, and multiscale organization of the structures. This has largely been achieved by using particles of complex shapes and polarizabilites (Janus, patchy, shaped, and faceted). We review the fundamentals of the interactions leading to the directed assembly of such structures, the ways to simulate the dynamics of the process, and the effect of particle size, shape, and properties on the type of structure obtained. We discuss how directional polarization interactions induced by external electric and magnetic fields can be used to assemble complex particles or particle mixtures into lattices of tailored structure. Examples of such systems include isotropic and anisotropic shaped particles with surface patches, which form networks and crystals of unusual symmetry by dipolar, quadrupolar, and multipolar interactions in external fields. The emerging trends in making reconfigurable and dynamic structures are discussed.


Asunto(s)
Coloides/química , Nanoestructuras/química , Anisotropía , Electricidad , Campos Magnéticos , Tamaño de la Partícula
20.
Langmuir ; 31(50): 13501-10, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26606128

RESUMEN

Oil foams are composed of gas bubbles dispersed in an oil phase. These systems are scarcely studied despite their great potential in diverse fields such as the food and cosmetic industries. Contrary to aqueous foams, the production of oil foams is difficult to achieve due to the inefficiency of surfactant adsorption at oil-air interfaces. Herein, we report a simple way to produce oil foams from oleogels, whose liquid phase is a mixture of sunflower oil and fatty alcohols. The temperature at which the oleogel formed was found to depend on both fatty alcohol chain length and concentration. The air bubbles in the oleogel foam were stabilized by fatty alcohol crystals. Below the melting temperature of the crystals, oleogel foams were stable for months. Upon heating, these ultrastable foams collapsed within a few minutes due to the melting of the crystal particles. The transition between crystal formation and melting was reversible, leading to thermoresponsive nonaqueous foams. The reversible switching between ultrastable and unstable foam depended solely on the temperature of the system. We demonstrate that these oleogel foams can be made to be photoresponsive by using internal heat sources such as carbon black particles, which can absorb UV light and dissipate the absorbed energy as heat. This simple approach for the formulation of responsive oil foams could be easily extended to other oleogel systems and could find a broad range of applications due to the availability of the components in large quantities and at low cost.


Asunto(s)
Alcoholes Grasos/química , Lípidos/química , Aceites de Plantas/química , Compuestos Orgánicos/química , Tamaño de la Partícula , Aceite de Girasol , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA