Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Gels ; 7(4)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34940316

RESUMEN

Rechargeable zinc-air batteries are promising for energy storage and portable electronic applications because of their good safety, high energy density, material abundance, low cost, and environmental friendliness. A series of alkaline gel polymer electrolytes formed from polyvinyl alcohol (PVA) and different amounts of terpolymer composed of butyl acrylate, vinyl acetate, and vinyl neodecanoate (VAVTD) was synthesized applying a solution casting technique. The thin films were doped with KOH 12M, providing a higher amount of water and free ions inside the electrolyte matrix. The inclusion of VAVTD together with the PVA polymer improved several of the electrical properties of the PVA-based gel polymer electrolytes (GPEs). X-ray diffraction (XRD), thermogravimetric analysis (TGA), and attenuated total reflectance- Fourier-transform infrared spectroscopy (ATR-FTIR) tests, confirming that PVA chains rearrange depending on the VAVTD content and improving the amorphous region. The most conducting electrolyte film was the test specimen 1:4 (PVA-VAVTD) soaked in KOH solution, reaching a conductivity of 0.019 S/cm at room temperature. The temperature dependence of the conductivity agrees with the Arrhenius equation and activation energy of ~0.077 eV resulted, depending on the electrolyte composition. In addition, the cyclic voltammetry study showed a current intensity increase at higher VAVTD content, reaching values of 310 mA. Finally, these gel polymer electrolytes were tested in Zn-air batteries, obtaining capacities of 165 mAh and 195 mAh for PVA-T4 and PVA-T5 sunk in KOH, respectively, at a discharge current of -5 mA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA