Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7958): 731-739, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37100943

RESUMEN

The global plastics problem is a trifecta, greatly affecting environment, energy and climate1-4. Many innovative closed/open-loop plastics recycling or upcycling strategies have been proposed or developed5-16, addressing various aspects of the issues underpinning the achievement of a circular economy17-19. In this context, reusing mixed-plastics waste presents a particular challenge with no current effective closed-loop solution20. This is because such mixed plastics, especially polar/apolar polymer mixtures, are typically incompatible and phase separate, leading to materials with substantially inferior properties. To address this key barrier, here we introduce a new compatibilization strategy that installs dynamic crosslinkers into several classes of binary, ternary and postconsumer immiscible polymer mixtures in situ. Our combined experimental and modelling studies show that specifically designed classes of dynamic crosslinker can reactivate mixed-plastics chains, represented here by apolar polyolefins and polar polyesters, by compatibilizing them via dynamic formation of graft multiblock copolymers. The resulting in-situ-generated dynamic thermosets exhibit intrinsic reprocessability and enhanced tensile strength and creep resistance relative to virgin plastics. This approach avoids the need for de/reconstruction and thus potentially provides an alternative, facile route towards the recovery of the endowed energy and materials value of individual plastics.

2.
Macromolecules ; 57(7): 3190-3201, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38616812

RESUMEN

Hybrid hydrogels are hydrogels that exhibit heterogeneity in the network architecture by means of chemical composition and/or microstructure. The different types of interactions, together with structural heterogeneity, which can be created on different length scales, determine the mechanical properties of the final material to a large extent. In this work, the microstructure-mechanical property relationships for a hybrid hydrogel that contains both electrostatic and covalent interactions are investigated. The hybrid hydrogel is composed of a microphase-separated polyelectrolyte complex network (PEC) made of poly(4-styrenesulfonate) and poly(diallyldimethylammonium chloride) within a soft and elastic polyacrylamide hydrogel network. The system exhibits a granular structure, which is attributed to the liquid-liquid phase separation into complex coacervate droplets induced by the polymerization and the subsequent crowding effect of the polyacrylamide chains. The coacervate droplets are further hardened into PEC granules upon desalting the hydrogel. The structure formation is confirmed by a combination of electron microscopic imaging and molecular dynamics simulations. The interpenetration of both networks is shown to enhance the toughness of the resulting hydrogels due to the dissipative behavior of the PEC through the rupture of electrostatic interactions. Upon cyclic loading-unloading, the hydrogels show recovery of up to 80% of their original dissipative behavior in less than 300 s of rest with limited plasticity. The granular architecture and the tough and self-recoverable properties of the designed hybrid networks make them good candidates for applications, such as shape-memory materials, actuators, biological tissue mimics, and elastic substrates for soft sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA